題目列表(包括答案和解析)
[ ]
已知命題及其證明:
(1)當(dāng)時(shí),左邊=1,右邊=所以等式成立;
(2)假設(shè)時(shí)等式成立,即成立,
則當(dāng)時(shí),,所以時(shí)等式也成立。
由(1)(2)知,對任意的正整數(shù)n等式都成立。
經(jīng)判斷以上評(píng)述
A.命題、推理都正確 B命題不正確、推理正確
C.命題正確、推理不正確 D命題、推理都不正確
2sinA |
cosA+cos(B-C) |
A | B | C | y值 |
30° | 60° | 90° | |
60° | 90° | 30° | |
90° | 30° | 60° |
2sinA |
cosA+cos(B-C) |
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即
令,得
①當(dāng)時(shí),,在上恒成立。因此在上單調(diào)遞減.從而對于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時(shí),,對于,,故在上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得 ,
從而
所以有
綜上,,
為了解高中一年級(jí)學(xué)生身高情況,某校按10%的比例對全校700名高中一年級(jí)學(xué)生按性別進(jìn)行抽樣檢查,測得身高頻數(shù)分布表如下表1、表2.
表1:男生身高頻數(shù)分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190) |
頻數(shù) |
2 |
5 |
14 |
13 |
4 |
2 |
表2:女生身高頻數(shù)分布表
身高(cm) |
[150,155) |
[155,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
頻數(shù) |
1 |
7 |
12 |
6 |
3 |
1 |
(I)求該校男生的人數(shù)并完成下面頻率分布直方圖;
(II)估計(jì)該校學(xué)生身高在的概率;
(III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。
【解析】第一問樣本中男生人數(shù)為40 ,
由分層抽樣比例為10%可得全校男生人數(shù)為400
(2)中由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在的頻率
故由估計(jì)該校學(xué)生身高在的概率
(3)中樣本中身高在180185cm之間的男生有4人,設(shè)其編號(hào)為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
由表1、表2知,樣本中身高在的學(xué)生人數(shù)為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學(xué)生身高在
的頻率-----------------------------------------6分
故由估計(jì)該校學(xué)生身高在的概率.--------------------8分
(3)樣本中身高在180185cm之間的男生有4人,設(shè)其編號(hào)為①②③④ 樣本中身高在185190cm之間的男生有2人,設(shè)其編號(hào)為⑤⑥從上述6人中任取2人的樹狀圖為:
--10分
故從樣本中身高在180190cm之間的男生中任選2人得所有可能結(jié)果數(shù)為15,求至少有1人身高在185190cm之間的可能結(jié)果數(shù)為9,因此,所求概率
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com