所以數(shù)列的通項(xiàng)公式為.故數(shù)列的通項(xiàng)公式為 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問(wèn),第二問(wèn)中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對(duì)偶式)設(shè),,

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對(duì)一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,.

由條件,得方程組,解得

所以,,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意,成立.

 

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為

由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于

當(dāng)時(shí),;當(dāng)時(shí),;

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

(2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列,試寫(xiě)出數(shù)列的通項(xiàng)公式;

(3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)中解:由,,

又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

此時(shí)也滿足,則所求常數(shù)的值為1且

第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:

(i)當(dāng)時(shí),;

(ii) 當(dāng)時(shí),,

所以

第三問(wèn)假設(shè)存在正整數(shù)n滿足條件,則

則(i)當(dāng)時(shí),

,

 

查看答案和解析>>

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項(xiàng)an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項(xiàng)為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問(wèn)題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項(xiàng)an;并用解析幾何中的有關(guān)思想方法來(lái)解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學(xué)過(guò)的知識(shí),把問(wèn)題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>


同步練習(xí)冊(cè)答案