(3)設(shè).試求數(shù)列的前n項(xiàng)和.并求當(dāng)時.. 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,已知對?n,m∈N+,當(dāng)n>m時,總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù)).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)正整數(shù)k,m,n(k<m<n)成等差數(shù)列,試比較Tn•Tk和(Tm2的大小,并說明理由;
(3)探究:命題p:“對?n,m∈N+,當(dāng)n>m時,總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù))”是命題t:“數(shù)列{an}是公比為q(q>0)的等比數(shù)列”的充要條件嗎?若是,請給出證明;若不是,請說明理由.

查看答案和解析>>

設(shè)數(shù)列{an}的前n項(xiàng)積為Tn,已知對?n,m∈N+,當(dāng)n>m時,總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù)).
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)正整數(shù)k,m,n(k<m<n)成等差數(shù)列,試比較Tn•Tk和(Tm2的大小,并說明理由;
(3)探究:命題p:“對?n,m∈N+,當(dāng)n>m時,總有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常數(shù))”是命題t:“數(shù)列{an}是公比為q(q>0)的等比數(shù)列”的充要條件嗎?若是,請給出證明;若不是,請說明理由.

查看答案和解析>>

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=1,且a3是a1和a9的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Snf(n)=
Sn(n+18)Sn+1
,試問當(dāng)n為何值時,f(n)最大?并求出f(n)的最大值.

查看答案和解析>>

  已知數(shù)列是首項(xiàng)為1的等差數(shù)列,且,若成等比數(shù)列。

   (1)求數(shù)列的通項(xiàng)公式;

   (2)設(shè)的前n項(xiàng)和為,試問當(dāng)n為何值時,最大?并求出的最大值

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
2-qan
1-q
(n∈N*)其中q為非零常數(shù),函數(shù)f(x)=
1
2
x2+2x-
1
2
,數(shù)列{bn}滿足bn+1=f′(bn),(n∈N*),b1=f(1),設(shè)cn=
1
12
anbn
,{bn}的前n項(xiàng)和為Tn,Bn=
1
T1
+
1
T2
+…+
1
Tn
,求An=c1+c2+…+cn
(Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)當(dāng)q=
1
3
時,試比較f(
4
3
An)
與f(Bn)的大小,并說明理由.

查看答案和解析>>


同步練習(xí)冊答案