由唯一性得 .即數(shù)列為等差數(shù)列. 查看更多

 

題目列表(包括答案和解析)

((本小題共13分)

若數(shù)列滿足,數(shù)列數(shù)列,記=.

(Ⅰ)寫出一個(gè)滿足,且〉0的數(shù)列;

(Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

(Ⅲ)對(duì)任意給定的整數(shù)n(n≥2),是否存在首項(xiàng)為0的E數(shù)列,使得=0?如果存在,寫出一個(gè)滿足條件的E數(shù)列;如果不存在,說明理由。

【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5

(答案不唯一,0,1,0,1,0也是一個(gè)滿足條件的E的數(shù)列A5

(Ⅱ)必要性:因?yàn)镋數(shù)列A5是遞增數(shù)列,所以.所以A5是首項(xiàng)為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因?yàn)閍1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案