⑶.記.. 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.?dāng)?shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項(xiàng)公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項(xiàng)?若是,請證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項(xiàng)是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項(xiàng)之和仍為數(shù)列{cn}中的項(xiàng)”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對任意的n∈N+,點(diǎn)(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(Ⅰ)求r的值.
(Ⅱ)當(dāng)b=2時(shí),記bn=2(log2an=1)(n∈N+),證明:對任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1

查看答案和解析>>

精英家教網(wǎng)兩城市A和B相距20km,現(xiàn)計(jì)劃在兩城市外以AB為直徑的半圓弧
AB
上選擇一點(diǎn)C建造垃圾處理廠,其對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在
AB
的中點(diǎn)時(shí),對城A和城B的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)判斷弧
AB
上是否存在一點(diǎn),使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點(diǎn)到城A的距離;若不存在,說明理由.

查看答案和解析>>

在1,2,3…,9,這9個(gè)自然數(shù)中,任取3個(gè)數(shù).
(Ⅰ)求這3個(gè)數(shù)中,恰有一個(gè)是偶數(shù)的概率;
(Ⅱ)記ξ為這三個(gè)數(shù)中兩數(shù)相鄰的組數(shù),(例如:若取出的數(shù)1、2、3,則有兩組相鄰的數(shù)1、2和2、3,此時(shí)ξ的值是2).求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

某計(jì)算機(jī)程序每運(yùn)行一次都隨機(jī)出現(xiàn)一個(gè)二進(jìn)制的六位數(shù)N=n1,n2,n3,n4,n5,n6,其中N的各位數(shù)中,n1=n6=1,nk(k=2,3,4,5)出現(xiàn)0的概率為
2
3
,出現(xiàn)1的概率為
1
3
,記ξ=n1+n2+n3+n4+n5+n6,當(dāng)該計(jì)算機(jī)程序運(yùn)行一次時(shí),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

D

C

D

B

C

A

C

B

D

B

11、2;12、;13、;14、;15、;16、

17、解:(1)
,   (6分)
的最小正周期為.                                 (8分)
(2)∵,∴,
.                               (12分)

18、解:(1)表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率

②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

.   ……………………………………………………6分

(2)在時(shí), 利用(1)的原理可知:

,(=1,2,3,4)

 的概率分布為:

 

 

 

=1×+2×+3×+4× = .………………………………………………12分

19、解:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面

因?yàn)?sub>,所以,

,故為等腰直角三角形,,

由三垂線定理,得

(Ⅱ)由(Ⅰ)知,依題設(shè)

,由,得

,

的面積

連結(jié),得的面積

設(shè)到平面的距離為,由于,得

,

解得

設(shè)與平面所成角為,則

所以,直線與平面所成的我為

20、解:(I)由題意知,因此,從而

又對求導(dǎo)得

由題意,因此,解得

(II)由(I)知),令,解得

當(dāng)時(shí),,此時(shí)為減函數(shù);

當(dāng)時(shí),,此時(shí)為增函數(shù).

因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

(III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

,從而,

解得

所以的取值范圍為

21、解:(Ⅰ)解法一:易知

所以,設(shè),則

因?yàn)?sub>,故當(dāng),即點(diǎn)為橢圓短軸端點(diǎn)時(shí),有最小值

當(dāng),即點(diǎn)為橢圓長軸端點(diǎn)時(shí),有最大值

解法二:易知,所以,設(shè),則

(以下同解法一)

(Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線,

聯(lián)立,消去,整理得:

得:

,即  ∴

故由①、②得

22、(I)解:方程的兩個(gè)根為,

當(dāng)時(shí),

所以;

當(dāng)時(shí),,

所以

當(dāng)時(shí),,

所以時(shí);

當(dāng)時(shí),,,

所以

(II)解:

(III)證明:

所以,

當(dāng)時(shí),

,

同時(shí),

綜上,當(dāng)時(shí),

 

 

 


同步練習(xí)冊答案