一天晚上停電.小美點(diǎn)上兩只粗細(xì)不同的蠟燭看書.40分鐘后.電來了.小美將兩只蠟燭同時(shí)熄滅.已知兩只新蠟燭中.粗蠟燭點(diǎn)完要2小時(shí).細(xì)蠟燭點(diǎn)完要1小時(shí).開始時(shí)兩根蠟燭一樣長.問熄滅時(shí)粗蠟燭是細(xì)蠟燭的 倍. 查看更多

 

題目列表(包括答案和解析)

一天晚上停電,小美點(diǎn)上兩只粗細(xì)不同的蠟燭看書,40分鐘后,電來了,小美將兩只蠟燭同時(shí)熄滅,已知兩只新蠟燭中,粗蠟燭點(diǎn)完要2小時(shí),細(xì)蠟燭點(diǎn)完要1小時(shí),開始時(shí)兩根蠟燭一樣長,問熄滅時(shí)粗蠟燭是細(xì)蠟燭的
 
倍.

查看答案和解析>>

一天晚上停電,小美點(diǎn)上兩只粗細(xì)不同的蠟燭看書,40分鐘后,電來了,小美將兩只蠟燭同時(shí)熄滅,已知兩只新蠟燭中,粗蠟燭點(diǎn)完要2小時(shí),細(xì)蠟燭點(diǎn)完要1小時(shí),開始時(shí)兩根蠟燭一樣長,問熄滅時(shí)粗蠟燭是細(xì)蠟燭的    倍.

查看答案和解析>>

一天晚上停電,小美點(diǎn)上兩只粗細(xì)不同的蠟燭看書,40分鐘后,電來了,小美將兩只蠟燭同時(shí)熄滅,已知兩只新蠟燭中,粗蠟燭點(diǎn)完要2小時(shí),細(xì)蠟燭點(diǎn)完要1小時(shí),開始時(shí)兩根蠟燭一樣長,問熄滅時(shí)粗蠟燭是細(xì)蠟燭的________倍.

查看答案和解析>>

一天晚上停電了,小胖點(diǎn)上兩根粗細(xì)不同的蠟燭看書,若干分鐘后,電來了,小胖將兩根蠟燭同時(shí)熄滅,已知兩根新蠟燭中,粗蠟燭全部點(diǎn)完要2h,細(xì)蠟燭要1h,開始時(shí)兩根蠟燭一樣長,熄滅時(shí)粗蠟燭長卻是細(xì)蠟燭的2倍,問:停電多少分鐘?

 

查看答案和解析>>

一天晚上停電了,小胖點(diǎn)上兩根粗細(xì)不同的蠟燭看書,若干分鐘后,電來了,小胖將兩根蠟燭同時(shí)熄滅,已知兩根新蠟燭中,粗蠟燭全部點(diǎn)完要2h,細(xì)蠟燭要1h,開始時(shí)兩根蠟燭一樣長,熄滅時(shí)粗蠟燭長卻是細(xì)蠟燭的2倍,問:停電多少分鐘?

查看答案和解析>>

 

一.1.D 2.B  3.B 4.B  5.B 6.C  7.C  8.A  9.C  10.C

二.11. 5或。保. 2倍  13.  70º    14. 25cm2    15. n. 2n. 4n. n   16.

三.

17.解:原式=(-×…2分

×  …4分 =-    …4分

=-=-                      …5分 

18.解:

 (1)按要求作出梯形     (2分)

(2) 按要求作出梯形     (4分)

      按要求作出梯形     (6分)

 

 

19.  (1)證明:在平行四邊形ABCD中,

∵ AB∥CD, ∴∠BAF=∠CEF,∠ABF=∠ECF,

     ∵ AB=CD,CE=CD, ∴ AB=CE,

     ∴ △AFB≌△EFC

(2)解:∵ ED=2CD=2AB,∴ ,

     ∵ AB∥CD, ∴ ,又BD=12

       所以,DG=BD=8 cm。

 

20  (1)0.24 , 50。唬2)(高度為F組的2倍);(3)432;

21. 解: (1)由圖可知洗衣機(jī)的進(jìn)水時(shí)間是4分鐘,.清洗時(shí)洗衣機(jī)中的水量是40升    (3分)

(2)①∵排水的時(shí)間是2分鐘, 排水速度為每分鐘19升,

    ∴排水結(jié)束時(shí)洗衣機(jī)中剩下的水量是(升)    (4分)

②                                        

,

設(shè)的函數(shù)表達(dá)式為

解這個(gè)方程組得,     (6分)

       (9分)

     ∴ ()        (8分)

 

22.(1)設(shè)小路的寬為xm,則(16-2x)(12-2x)=×16×12,解得x=2,或x=12(舍去). ∴x=2,故小明的結(jié)果不對(duì).

   (2)四個(gè)角上的四個(gè)扇形可合并成一個(gè)圓,設(shè)這個(gè)圓的半徑為rm,

故有r2=×16×12,解得r≈5.5m.

   (3)依此連結(jié)各邊的中點(diǎn)得如圖的設(shè)計(jì)方案.

 

23、(1)(1)證明:∵AB為⊙O的直徑,CD⊥AB,

∴∠AEB=∠ADH=90°,

∴∠C+∠CHE=90°,∠A+∠AHD=90°,

∵∠AHD=∠CHE,∴∠A=∠C,

∵∠ADH=∠CDB=90°,

∴△AHD∽△CBD

(2)設(shè)OD=x,則BD=1-x,AD=1+x

證Rt△AHD∽R(shí)t△CBD

      則HD : BD=AD : CD

      即HD : (1-x)=(1+x) : 2

        即HD=

          在Rt△HOD中,由勾股定理得:

    OH==

           所以HD+HO=+=1

 

24.  (1)在RtΔABC中,                             ,

又因?yàn)辄c(diǎn)B在x軸的負(fù)半軸上,所以B(-2,0)

(2)設(shè)過A,B,D三點(diǎn)的拋物線的解析式為                ,

將A(0,6),B(-2,0),D(4,6)三點(diǎn)的坐標(biāo)代入得

            解得        所以     

(3)在拋物線上存在點(diǎn)P1(0,6)或P2(4,6),使SΔPBC=S梯形ABCD

25、  解:(1)在Rt△CDF中,sinC=,CD=x,

    ∴DF=CD• sinC=x,CF=

∴BF=18-。

(2)∵ED∥BC,∴,

∴ED=

∴S=×DF×(ED+BF)

 (3)由S1=2S2,得S1S

      ∴(18-)•

     解這個(gè)方程,得:x1=10,x2=0(不合題意,舍去)

     所以,當(dāng)x=10時(shí),S1=2S2。


同步練習(xí)冊(cè)答案