1.已知全集 查看更多

 

題目列表(包括答案和解析)

(2012•吉林二模)已知全集U=R,A={A|x|x2-2x<0},B={x|2x-2≥0}則A∩(CuB)=( 。

查看答案和解析>>

已知全集U=R,A={x|
12
2x<4}
,B={x|log3x≤2}.
(Ⅰ)求A∩B;         
(Ⅱ)求?U(A∪B).

查看答案和解析>>

已知全集U=R,若集合M={x|log2x<2},集合N={x|y=
x-3
},則M∩(?UN)=( 。
A、{x|0<x<3}
B、{x|0<x≤3}
C、{x|3<x<4}
D、{x|3≤x<4}

查看答案和解析>>

已知全集U=R,集合A=[-1,3),?UB=(-∞,1)∪(4,+∞),則A∩B=( 。

查看答案和解析>>

已知全集U=R,集合M={x|2x-4≤0},則CUM=(  )

查看答案和解析>>

 

一、選擇題(共60分)

1―6DDBBAC  7―12DABCAC

二、填空題:(本大題共5小題,每小題5分,共20分)

13.3

14.

15.

16.240

三、解答題:本大題有6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(1)

          1分

      

          5分

   (2)

          7分

       由余弦定理   9分

           10分

18.(1)記“這名考生通過書面測試”為事件A,則這名考生至少正確做出3道題,即正確做出3道題或4道題,

       故   4分

   (2)由題意得的所有可能取值分別是0,1,2,3,4,且

 

      

      

          8分

      

       的分布列為:

      

0

1

2

3

4

P

          10分

          12分

19.解法一:(1)在直平行六面體ABCD―A1B1C1D1中,

      

       又

          4分

       又

   (2)如圖,連B1C,則

       易證

       中點,

      

          8分

       取CD中點M,連BM, 則平面CC1D1D,

       作于N,連NB,由三垂線定理知:

       是二面角B―DE―C的平面角     10分

       在

      

       則二面角B―DE―C的大小為    12分

       解法二:(1)以D為坐標原點,射線DA為軸,建立如圖所示坐標為

       依題設(shè)

      

      

       又

       平面BDE    6分

<span id="mpicx"></span>
<source id="mpicx"><dfn id="mpicx"><td id="mpicx"></td></dfn></source>

    <source id="mpicx"><del id="mpicx"></del></source>

           8分

           由(1)知平面BDE的一個法向量為

           取DC中點M,則

          

          

           等于二面角B―DE―C的平面角    10分

              12分

    20.解:(1)由已知得   2分

           由

          

           遞減

           在區(qū)間[-1,1]上的最大值為   4分

           又

          

           由題意得

           故為所求         6分

       (2)解:

          

               8分

           二次函數(shù)的判別式為:

          

           令

           令    10分

          

           為單調(diào)遞增,極值點個數(shù)為0    11分

           當=0有兩個不相等的實數(shù)根,根據(jù)極值點的定義,可知函數(shù)有兩個極值點    12分

    21.解:(1)設(shè)

           化簡得    3分

       (2)將    4分

           法一:兩點不可能關(guān)于軸對稱,

           的斜率必存在

           設(shè)直線DE的方程為

           由   5分

               6分

              7分

           且

              8分

           將代化入簡得

              9分

           將

           過定點(-1,-2)    10分

           將,

           過定點(1,2)即為A點,舍去     11分

               12分

           法二:設(shè)    (5分)

           則   6分

           同理

           由已知得   7分

           設(shè)直線DE的方程為

           得   9分

              10分

           即直線DE過定點(-1,-2)    12分

    22.解:(1)由    2分

           于是

           即    3分

           有   5分

              6分

       (2)由(1)得    7分

           而

          

                   

               10分

           當

           于是

           故命題得證     12分


    同步練習冊答案