A. B. 查看更多

 

題目列表(包括答案和解析)

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且1+
tanA
tanB
=
2c
b

(1)求角A.
(2)若
m
=(0,-1)
,
n
=(cosB,2cos2
C
2
)
,試求|
m
+
n
|的最小值.

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

查看答案和解析>>

4、函數(shù)y=log2(1-x)的圖象是( 。

查看答案和解析>>

11、已知A,B均為集合U={1,3,5,7,9}的子集,且A∩B={3},CUB∩A={9},則A=(  )

查看答案和解析>>

20、設(shè)集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,則實(shí)數(shù)a,b必滿(mǎn)足(  )

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

    • 20090508

      (2)設(shè),則,

      由正弦定理:,

      所以?xún)蓚(gè)正三角形的面積和,…………8分

      ……………10分

      ,

      所以:………………………………………………………………12分

      18.解:(1);……………………6分

      (2)消費(fèi)總額為1500元的概率是:……………………7分

      消費(fèi)總額為1400元的概率是:………8分

      消費(fèi)總額為1300元的概率是:

      ,…11分

      所以消費(fèi)總額大于或等于1300元的概率是;……………………12分

      19.(1)證明:因?yàn)?sub>,所以平面

      又因?yàn)?sub>,

      平面,

      平面平面;…………………4分

      (2)因?yàn)?sub>,所以平面,所以點(diǎn)到平面的距離等于點(diǎn)E到平面的距離,

      過(guò)點(diǎn)E作EF垂直CD且交于點(diǎn)F,因?yàn)槠矫?sub>平面,所以平面,

      所以的長(zhǎng)為所求,………………………………………………………………………6分

      因?yàn)?sub>,所以為二面角的平面角,,

      =1,

      點(diǎn)到平面的距離等于1;…………………………………………………………8分

      (3)連接,由平面,,得到,

      所以是二面角的平面角,

      ,…………………………………………………………………11分

      二面角大小是!12分

      20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

      ,

      解得,所以,…………………3分

      所以,

      所以;…………………………………………………………………6分

      (2),因?yàn)?sub>,所以數(shù)列是遞增數(shù)列,…8分

      當(dāng)且僅當(dāng)時(shí),取得最小值,

      則:

      所以,即的取值范圍是!12分

      21.解:(1)設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,

      因?yàn)?sub>,所以,得到:,注意到不共線(xiàn),所以軌跡方程為;…………………………………5分

      (2)設(shè)點(diǎn)是軌跡C上的任意一點(diǎn),則以為直徑的圓的圓心為,

      假設(shè)滿(mǎn)足條件的直線(xiàn)存在,設(shè)其方程為,直線(xiàn)被圓截得的弦為

       

      …………………………………………7分

      弦長(zhǎng)為定值,則,即,

      此時(shí),……………………………………………………9分

      所以當(dāng)時(shí),存在直線(xiàn),截得的弦長(zhǎng)為

          當(dāng)時(shí),不存在滿(mǎn)足條件的直線(xiàn)!12分

      22.解:(1)

      ,……2分

      ,

      因?yàn)楫?dāng)時(shí)取得極大值,所以,

      所以的取值范圍是:;………………………………………………………4分

      (2)由下表:

      0

      0

      遞增

      極大值

      遞減

      極小值

      遞增

      ………………………7分

      畫(huà)出的簡(jiǎn)圖:

      依題意得:,

      解得:,

      所以函數(shù)的解析式是:

      ;……9分

      (3)對(duì)任意的實(shí)數(shù)都有

      ,

      依題意有:函數(shù)在區(qū)間

      上的最大值與最小值的差不大于

      ………10分

      在區(qū)間上有:

      ,

      的最大值是,

      的最小值是,……13分

      所以

      的最小值是!14分

       

       


      同步練習(xí)冊(cè)答案