題目列表(包括答案和解析)
如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個內(nèi)角為,則該菱形的“接近度”等于 ;
②當(dāng)菱形的“接近度”等于 時,菱形是正方形.
(2)設(shè)矩形相鄰兩條邊長分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認(rèn)為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個內(nèi)角為,則該菱形的“接近度”等于 ;
②當(dāng)菱形的“接近度”等于 時,菱形是正方形.
(2)設(shè)矩形相鄰兩條邊長分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.你認(rèn)為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應(yīng)保證相似圖形的“接近度”相等.
(1)設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個內(nèi)角為,則該菱形的“接近度”等于 ;
②當(dāng)菱形的“接近度”等于 時,菱形是正方形.
(2)設(shè)矩形相鄰兩條邊長分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認(rèn)為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
一、填空題:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
7.2-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
14.
15. (-8,0)。
16.6。
17. .平行四邊形。
18.60
19.4,12
二、選擇題:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答題:
1.(1)如圖答2,因為AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分
分別過點B、D作BF⊥AD,DE⊥AB,垂足分別為點E、F.
則BE = CF.-------------------------------------------------------------------------------------------- 4分
因為∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 當(dāng)∠DAB = 90°時,菱形ABCD為正方形,周長最小值為8;---------------------------8分
② 當(dāng)AC為矩形紙片的對角線時,設(shè)AB = x,如圖答3,在Rt△BCG中,
,.所以周長最大值為17.-------------------------------------------9分
2.證明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
證得:△AOE≌△COF-----------------------------------------------------------3′
證得:四邊形AECF是平行四邊形------------------------------------------------5′
由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′
5.(本題滿分8分)
解:(1)方法一:如圖①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分別平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF. …………………………4分
|