題目列表(包括答案和解析)
閱讀理解:對于任意正實數(shù)a、b,∵≥0, ∴≥0,
∴≥,只有當a=b時,等號成立.
結論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值.
根據(jù)上述內(nèi)容,回答下列問題:
若m>0,只有當m= 時, .
思考驗證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(與點A、B不重合),過點C作CD⊥AB,垂足為D,AD=a,DB=b.
試根據(jù)圖形驗證≥,并指出等號成立時的條件.
探索應用:如圖2,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.
閱讀理解:對于任意正實數(shù)a、b,∵≥0, ∴≥0,
∴≥,只有當a=b時,等號成立.
結論:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值.
根據(jù)上述內(nèi)容,回答下列問題:
若m>0,只有當m= 時, .
思考驗證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(與點A、B不重合),過點C作CD⊥AB,垂足為D,AD=a,DB=b.
試根據(jù)圖形驗證≥,并指出等號成立時的條件.
探索應用:如圖2,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點,過點P作PC⊥x軸于點C,PD⊥y軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.
一、填空題:
1.60°.
2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;
3.1;
4.4。
5.60
7.2-2
8.15。
9.5
10.4
11.5
12. 2,3,n。
14.
15. (-8,0)。
16.6。
17. .平行四邊形。
18.60
19.4,12
二、選擇題:
1.C
2.C
3.B
4.B
5.B
6.A
7.C。
8.B。
9.C
10.D
11.C。
12.B
13.B
14.C
15.D
16. C
17.C
18.D
19.D
20.C
21.D
22.D。
三、解答題:
1.(1)如圖答2,因為AD∥BC,AB∥DC ------------------------------------------------- 2分
所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分
分別過點B、D作BF⊥AD,DE⊥AB,垂足分別為點E、F.
則BE = CF.-------------------------------------------------------------------------------------------- 4分
因為∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分
所以AD = AB.
所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分
(2)存在最小值和最大值.-------------------------------------------------------------------------- 7分
① 當∠DAB = 90°時,菱形ABCD為正方形,周長最小值為8;---------------------------8分
② 當AC為矩形紙片的對角線時,設AB = x,如圖答3,在Rt△BCG中,
,.所以周長最大值為17.-------------------------------------------9分
2.證明: ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′
證得:△AOE≌△COF-----------------------------------------------------------3′
證得:四邊形AECF是平行四邊形------------------------------------------------5′
由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′
5.(本題滿分8分)
解:(1)方法一:如圖①
∵在□ ABCD中,AD∥BC
∴∠DAB+∠ABC=180° ………………………1分
∵AE、BF分別平分∠DAB和∠ABC
∴∠DAB=2∠BAE,∠ABC=2∠ABF ………………………2分
∴2∠BAE+2∠ABF=180°
即∠BAE+∠ABF=90° ………………………3分
∴∠AMB=90°
∴AE⊥BF. …………………………4分
|