(Ⅱ)求的最小值和使取得最小值的的集合. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖邊長為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現(xiàn)需在其余部分設計一個矩形草坪PNCQ,其中P是水池邊上任意一點,點N、Q分別在邊BC和CD上,設∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點P到邊BC和AB距離之比
PNPM
的最小值.

查看答案和解析>>

已知函數(shù)f(x)=x2+2xsinθ-1,x∈[-
3
2
,
1
2
],θ∈[0,2π).
(1)當θ=
π
6
時,求f(x)的最大值和最小值;
(2)求θ的范圍,使f(x)在區(qū)間[-
3
2
1
2
]上是單調(diào)函數(shù).

查看答案和解析>>

為了研究某種藥物,用小白鼠進行試驗,發(fā)現(xiàn)藥物在血液內(nèi)的濃度與時間的關系因使用方式的不同而不同.若使用注射方式給藥,則在注射后的3小時內(nèi),藥物在白鼠血液內(nèi)的濃度y1與時間t滿足關系式:y1=4-at(0<a<
4
3
,a為常數(shù))
,若使用口服方式給藥,則藥物在白鼠血液內(nèi)的濃度y2與時間t滿足關系式:y2=
t
(0<t<1)
3-
2
t
(1≤t≤3)
.現(xiàn)對小白鼠同時進行注射和口服該種藥物,且注射藥物和口服藥物的吸收與代謝互不干擾.
(1)若a=1,求3小時內(nèi),該小白鼠何時血液中藥物的濃度最高,并求出最大值
(2)若使小白鼠在用藥后3小時內(nèi)血液中的藥物濃度不低于4,求正數(shù)a的取值范圍.

查看答案和解析>>

精英家教網(wǎng)如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,點A,B關于y軸對稱.一曲線E過C點,動點P在曲線E上運動,且保持|PA|+|PB|的值不變.
(1)求曲線E的方程;
(2)已知點S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若點F(1,
3
2
)
是曲線E上的一點,設M,N是曲線E上不同的兩點,直線FM和FN的傾斜角互補,試判斷直線MN的斜率是否為定值,如果是,求出這個定值;如果不是,請說明理由.

查看答案和解析>>

(2006•朝陽區(qū)二模)設對于任意實數(shù)x、y,函數(shù)f(x)、g(x)滿足f(x+1)=
1
3
f(x),且f(0)=3,g(x+y)=g(x)+2y,g(5)=13,n∈N*
(Ⅰ)求數(shù)列{f(n)}、{g(n)}的通項公式;
(Ⅱ)設cn=g[
n
2
f(n)
],求數(shù)列{cn}的前n項和Sn;
(Ⅲ)已知
lim
n
 
2n+3
3n-1
=0,設F(n)=Sn-3n,是否存在整數(shù)m和M,使得對任意正整數(shù)n不等式m<F(n)<M恒成立?若存在,分別求出m和M的集合,并求出M-m的最小值;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案