A. B. C. D. 第Ⅱ卷 查看更多

 

題目列表(包括答案和解析)

已知均為正數(shù),,則的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非選擇題  共90分)

二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

查看答案和解析>>

在等差數(shù)列中,若,則的值為(    ) 

A. 6            B. 8            C. 10          D. 16

第Ⅱ卷    (非選擇題  共100分)

 

查看答案和解析>>

正項(xiàng)數(shù)列的前n項(xiàng)的乘積,則數(shù)列的前n項(xiàng)和中的最大值是                (    )

       A.    B.    C.    D.

第Ⅱ卷(非選擇題,共90分)

查看答案和解析>>

下列四個(gè)函數(shù)圖象,只有一個(gè)是符合(其中,,為正實(shí)數(shù),為非零實(shí)數(shù))的圖象,則根據(jù)你所判斷的圖象,之間一定成立的關(guān)系是(   )

 

 

 

 

 

 

 

 

 

 


A.          B.        C.      D.

 

第Ⅱ卷

 

查看答案和解析>>

給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m在此基礎(chǔ)上給出下列關(guān)于函數(shù)的四個(gè)命題:

     ①             ②

     ③        ④的定義域?yàn)镽,值域是

     則其中真命題的序號(hào)是                                     (    )

     A.①②                        B.①③                      C.②④                      D.③④

第Ⅱ卷

 

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

設(shè)g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對(duì)任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設(shè)的中點(diǎn),連結(jié),則四邊形為正方形,

.故,,,,即

平面,

(II)由(I)知平面

平面,

的中點(diǎn), 連結(jié),又,則

的中點(diǎn),連結(jié),則,.

為二面角的平面角.

連結(jié),在中,,

的中點(diǎn),連結(jié),

中,,,

二面角的余弦值為

解法二:

(I)以為原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,.

,

又因?yàn)?sub> 所以,平面.

(II)設(shè)為平面的一個(gè)法向量.

,

    取,則

,設(shè)為平面的一個(gè)法向量,

,,得,則,

設(shè)的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當(dāng)時(shí), 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以, 當(dāng)時(shí),函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個(gè)根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即,

,得,

∵直線與橢圓交于不同的兩點(diǎn)設(shè)

,

,

       ∴

設(shè),則,

上單調(diào)遞增          ∴.


同步練習(xí)冊(cè)答案