已知.且是的充分條件.則的取值范圍為 查看更多

 

題目列表(包括答案和解析)

已知,且的充分條件,則的取值范圍為 (    )

(A)-1<<6                  (B) 

(C)           (D) 

 

查看答案和解析>>

已知x, y滿足約束條件, 則的取值范圍為是  (    )

A.〔 ­—1,〕       B.〔-,〕     C. 〔 -,+∞ 〕     D. 〔-,1〕

 

查看答案和解析>>

. (本小題滿分12分)已知函數(shù),且給定條件

⑴求的最大值及最小值;

⑵若又給條件,且的充分條件,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

已知條件,條件,且的充分不必要條件,則的取值范圍可以是(    ).

  A.                               B.      

 C.                             D.

 

查看答案和解析>>

(08年泉州一中適應(yīng)性練習(xí)理)已知 ,且p是q的充分條件,則的取值范圍為(    )

  A.  -1<<6     B.      C.     D.

查看答案和解析>>

  • <td id="ghtrs"><kbd id="ghtrs"></kbd></td>
    <track id="ghtrs"></track>

    2009.4

     

    1-10.CDABB   CDBDA

    11.       12. 4        13.        14.       15.  

    16.   17.

    18.解:(Ⅰ)由題意,有,

    .…………………………5分

    ,得

    ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

    (Ⅱ)由,得

    .           ……………………………………………… 10分

    ,∴.      ……………………………………………… 14分

    19.解:(Ⅰ)設(shè)數(shù)列的公比為,由.             …………………………………………………………… 4分

    ∴數(shù)列的通項(xiàng)公式為.      ………………………………… 6分

    (Ⅱ) ∵,    ,      ①

    .      ②         

    ①-②得: …………………12分

                 得,                           …………………14分

    20.解:(I)取中點(diǎn),連接.

    分別是梯形的中位線

    ,又

    ∴面,又

    .……………………… 7分

    (II)由三視圖知,是等腰直角三角形,

         連接

         在面AC1上的射影就是,∴

         ,

    ∴當(dāng)的中點(diǎn)時(shí),與平面所成的角

      是.           ………………………………14分

                                                   

    21.解:(Ⅰ)由題意:.

    為點(diǎn)M的軌跡方程.     ………………………………………… 4分

    (Ⅱ)由題易知直線l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

        ∴由拋物線定義知:|MN|=|MF|+|NF|…………7分

           同理RQ的方程為,求得.  ………………………… 9分

    .  ……………………………… 13分

    當(dāng)且僅當(dāng)時(shí)取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

    22. 解:(Ⅰ),由題意得,

    所以                    ………………………………………………… 4分

    (Ⅱ)證明:令,,

    得:……………………………………………… 7分

    (1)當(dāng)時(shí),,在,即上單調(diào)遞增,此時(shí).

              …………………………………………………………… 10分

    (2)當(dāng)時(shí),,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時(shí)只要或者即可,得,

    .                        …………………………………………14分

    由 (1) 、(2)得 .

    ∴綜上所述,對(duì)于,使得成立. ………………15分

     


    同步練習(xí)冊(cè)答案