A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

10、在集合{a,b,c,d}上定義兩種運(yùn)算⊕和?如圖那么d?(a⊕c)=(  )

查看答案和解析>>

函數(shù)y=
ex+e-x
ex-e-x
的圖象大致為( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)向量
OA
=
a
,
OB
=
b
,其中
a
=(3,1),
b
=(1,3)
,若
OC
a
b
,且0≤μ≤λ≤1,那么C點(diǎn)所有可能的位置區(qū)域用陰影表示正確的是(  )
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

12、今年“3•15”,某報(bào)社做了一次關(guān)于“什么是新時(shí)代的雷鋒精神?”的調(diào)查,在A,B,C,D四個(gè)單位回收的問(wèn)卷數(shù)依次成等差數(shù)列,共回收1000份,因報(bào)道需要,再?gòu)幕厥盏膯?wèn)卷中按單位分層抽取容量為150的樣本,若在B單位抽30份,則在D單位抽取的問(wèn)卷是
60
份.

查看答案和解析>>

4、集合M={x|-2≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是(  )

查看答案和解析>>

 

一、

  • <button id="4uigs"></button>
    • 20080506

      題號(hào)

      1

      2

      3

      4

      5

      6

      7

      8

      9

      10

      11

      12

      選項(xiàng)

      A

      D

      C

      A

      A

      C

      B

      B

      C

      D

      C

      B

      二、填空題:

      13.-1    14.5   15.    16.③④      

      三、解答題:

      17.解:(Ⅰ) =……1分

      =……2分

        ……3分

       

      ……4分

        .……6分

      (Ⅱ)在中, ,

      ……7分

      由正弦定理知:……8分

      =.    ……10分

      18.解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

      6ec8aac122bd4f6e                                     ………………4分

      (Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

      6ec8aac122bd4f6e                                      …………9分

      ξ的分布列為:

      ξ

      10

      8

      6

      4

      P

      3/28

      31/56

      9/28

      1/56

      6ec8aac122bd4f6e                                …………12分

      19. 解法一:

         (1)設(shè)于點(diǎn),∵,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

       由已知得,,

      ,,二面角的大小為.…6分

         (2)當(dāng)中點(diǎn)時(shí),有平面.

      證明:取的中點(diǎn)連結(jié)、,則

      ,故平面即平面.

      ,∴,又平面,

      .…………………………………………12分

      解法二:以D為原點(diǎn),以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,則

      ,,.…………2分

         (1),

      ,設(shè)平面的一個(gè)法向量

      ,則.

      設(shè)平面的一個(gè)法向量為,則.

      ,∴二面角的大小為. …………6分

         (2)令

       

      由已知,,要使平面,只須,即則有

      ,得,當(dāng)中點(diǎn)時(shí),有平面.…12分

      20解:(I)f(x)定義域?yàn)?一1,+∞),                        …………………2分

          由得x<一1或x>1/a,由得一1<x<1/a,

           f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

      (Ⅱ)由(I)可知:

          ①當(dāng)0<a≤1/2時(shí),,f(x)在[1,2]上為減函數(shù),

          ………………………………8分

          ②當(dāng)1/2<a<1時(shí),f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

          …………………………………10分

          ③當(dāng)a≥1時(shí),f(x)在[1,2]上為增函數(shù),

          …………………………………12分

      21.解:(1),設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,所以,

      所以

      由條件,得,又因?yàn)槭堑缺龋?/p>

      所以,所以,所求動(dòng)點(diǎn)的軌跡方程 ……………………6分

         (2)設(shè)直線l的方程為,

      聯(lián)立方程組得,

      , …………………………………………8分

      , ………………………………………………10分

      直線RQ的方程為,

        …………………………………………………………………12分

      22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

      ,

              兩式相減得.                --------------------3分

              當(dāng)時(shí),,

      .            --------------------------------------------------4分

      (Ⅱ)∵,

      ,

             ,

        ,

        ………

       

      以上各式相加得

      .

        ,∴.      ---------------------------6分

      .     -------------------------------------------------7分

      ,

      .

      .

               =.

      .  -------------------------------------------------------------9分

      (3)=

                          =4+

         =

                          .  -------------------------------------------10分

              ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

              ①當(dāng)時(shí),成立.

              ②假設(shè)時(shí),命題成立即,

              那么,當(dāng)時(shí),成立.

              由①、②可得,對(duì)于都有成立.

             ∴.       ∴.--------------------12分

       


      同步練習(xí)冊(cè)答案
    • <noframes id="4uigs"></noframes>
      <li id="4uigs"><rt id="4uigs"></rt></li>
          <button id="4uigs"><code id="4uigs"></code></button>
          <small id="4uigs"></small>