2. (理)若數(shù)列( n)滿(mǎn)足.且=-. = A. B.1 C.2 D. 查看更多

 

題目列表(包括答案和解析)

若數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足等式an+2Sn=3.
(1)能否在數(shù)列中找到按原來(lái)順序成等差數(shù)列的任意三項(xiàng),說(shuō)明理由;
(2)能否從數(shù)列中依次抽取一個(gè)無(wú)限多項(xiàng)的等比數(shù)列,且使它的所有項(xiàng)和S滿(mǎn)足數(shù)學(xué)公式,如果這樣的數(shù)列存在,這樣的等比數(shù)列有多少個(gè)?

查看答案和解析>>

若數(shù)列{an}滿(mǎn)足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對(duì)任意n∈N*都成立,則我們把數(shù)列{an}稱(chēng)為“L型數(shù)列”.
(1)試問(wèn)等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L(zhǎng)型數(shù)列?若是,寫(xiě)出對(duì)應(yīng)p、q的值;若不是,說(shuō)明理由.
(2)已知L型數(shù)列{an}滿(mǎn)足a1=1,a2=3,an+1-4an+4an-1=0(n≥2,n∈N*),證明:數(shù)列{an+1-2an}是等比數(shù)列,并進(jìn)一步求出{an}的通項(xiàng)公式an

查看答案和解析>>

若數(shù)列{an}滿(mǎn)足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對(duì)任意n∈N*都成立,則我們把數(shù)列{an}稱(chēng)為“L型數(shù)列”.
(1)試問(wèn)等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L(zhǎng)型數(shù)列?若是,寫(xiě)出對(duì)應(yīng)p、q的值;若不是,說(shuō)明理由.
(2)已知L型數(shù)列{an}滿(mǎn)足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
(3)請(qǐng)你提出一個(gè)關(guān)于L型數(shù)列的問(wèn)題,并加以解決.(本小題將根據(jù)所提問(wèn)題的普適性給予不同的分值,最高10分)

查看答案和解析>>

數(shù)列{an}的前n項(xiàng)和為Sn,若a1=2且Sn=Sn-1+2n(n≥2,n∈N*).
(Ⅰ)求Sn
(Ⅱ)是否存在等比數(shù)列{bn}滿(mǎn)足b1=a1,b2=a3,b3=a9?若存在,則求出數(shù)列{bn}的通項(xiàng)公式;若不存在,則說(shuō)明理由.

查看答案和解析>>

(理科)已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn=
a
a-1
(an-1)(a為常數(shù)且a≠0,a≠1,n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值;
(3)在滿(mǎn)足(2)的條件下,記Cn=
1
1+an
+
1
1-an+1
,設(shè)數(shù)列{Cn}的前n項(xiàng)和為T(mén)n,求證:Tn>2n-
1
3

查看答案和解析>>

一、選擇題  B文(B)ACDB   CACB(文A)B    AD

二、填空題  13.   14.1200     15. (理)3(文)1   16.2

三、解答題

17. 解:,且.

    

    ① ………………3分

       ②

又A為三角形的內(nèi)角,所以sinA= ………………6分

 ………………9分

 ………………12分

18.解:由題意p,q中有且僅有一個(gè)為真,一個(gè)為假,…………2分

由p真m>2,……5分

 q真<01<m<3, ……7分

所以,若p假q真,則1<m≤2……9分

 若p真q假,則m≥3……11分

綜上所述:m∈(1,2)∪[3,+∞].…………12分

 

19.證明(1):過(guò)點(diǎn)D作

,垂足為H.連結(jié)HB、GH,

所以

,且=

所以

由三垂線定理得…………(理、文)6分

(2)(理)

所以

連結(jié)DG,則垂足G,所以…………9分

垂足為M,連結(jié)DM,則為二面角D-BF-C的平面角

所以,在中,

 .…………12分

(注:也可用空間向量來(lái)解,步驟略)

(文)

又∵AD∥面BFC

所以

…………9分

=0,得x=

所以x=時(shí)有最大值,其值為.…………12分

 

20.解:(1)由已知條件分析可知,在甲、乙兩地分別投資5萬(wàn)元的情況下欲獲利12.5萬(wàn)元,須且必須兩地都不發(fā)生洪水.

故所求的概率為P=(1-0.6)×(1-0.5)=0.2………………(理)5分(文)6分

(2)設(shè)投資1萬(wàn)元在甲地獲利萬(wàn)元,則的可能取值為15萬(wàn)元和-5萬(wàn)元.

又此地發(fā)生洪水的概率為0.6

故投資1萬(wàn)元在甲地獲利的期望為1.5×0.6+(-0.5)×0.4=0.7萬(wàn)元.…………(理)7分

同理在乙地獲利的期望為1×0.5+(-0.2)×0.5=0.4萬(wàn)元. …………(理)8分

設(shè)在甲、乙兩地的投資分別為x,y萬(wàn)元,

則平均獲利z=0.7x+0.4y萬(wàn)元.……(理)9分

(則獲得的利潤(rùn)z=1.5x+y萬(wàn)元.…………(文)7分)

其中x,y滿(mǎn)足:

如右圖,因?yàn)锳點(diǎn)坐標(biāo)為(6,4)  

所以,在甲、乙兩地的投資分別為6、4萬(wàn)元時(shí),

可平均獲利最大,

其最大值為(理)5.8萬(wàn)元、(文)13萬(wàn)元. …………(理、文)12分

(注:若不用線性規(guī)劃的格式求解,只要結(jié)果正確同樣給分)

 

21.解:(1)設(shè)平移后的右焦點(diǎn)為P(x,y),

易得已知橢圓的右焦點(diǎn)為F2(3,0), ………………1分

(2)易知F(0,為曲線C上的焦點(diǎn),又

所以A,B,F三點(diǎn)共線………………5分

設(shè)

 ………………12分

(文)21.解:(1)當(dāng)n為偶數(shù)時(shí),因?yàn)閒(-x)=(-x)n+1=xn+1=f(x),即函數(shù)f(x)為偶函數(shù)

所以其圖象關(guān)于y軸對(duì)稱(chēng)………………2分

當(dāng)n為奇數(shù)時(shí),因?yàn)閒(-x)=(-x)n+1=-xn+1,所以

所以其圖象關(guān)于點(diǎn)(0,1)中心對(duì)稱(chēng). ………………4分

(或:令g(x)=f(x)-1=xn,所以g(-x)=(-x)n=-xn=-g(x) ,即g(x)為奇函數(shù),

所以g(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,1)中心對(duì)稱(chēng).)………4分

(2)=…………6分

所以…………#

當(dāng)時(shí);…………8分

當(dāng)時(shí),#式兩邊同乘以x,得…*

*式-#式可得,…………12分

22.(理)解:(1)易得f(x)=+ 的定義域?yàn)閇0,n]

,得x=------------1分

所以,函數(shù)f(x)在(0,)上單調(diào)遞增,在(,n)單調(diào)遞減,

所以=------------3分

由于,所以-------------5分

因?yàn)?

所以--------8分

(2)令

所以=------------10分

;

所以

-------------12分

,所以

相除得,由,所以

 

最大   -----------14分

 


同步練習(xí)冊(cè)答案