由雙曲線定義得 查看更多

 

題目列表(包括答案和解析)

我們常用定義解決與圓錐曲線有關(guān)的問題.如“設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作傾斜角為θ的弦AB,設(shè)|F1A|=r1,|F1B|=r2,試證
1
r1
+
1
r2
為定值”.
證明如下:不妨設(shè)A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ

同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.請用類似的方法探索:設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作傾斜角為θ的直線與雙曲線右支交于點A,左支交于點B,設(shè)|F1A|=r1,|F1B|=r2,是否有類似的結(jié)論成立,請寫出與定值有關(guān)的結(jié)論是______..

查看答案和解析>>

已知橢圓C:的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1以拋物線的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線x2=
1
mn
y
異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案