.數(shù)列{an}.{bn}的前n項(xiàng)和分別為Sn.Tn. (Ⅰ)證明:對(duì)一切正整數(shù)n.總有Sn>0, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,且滿足2Sn=-2an+n2-n+2,2bn=n-2-an
(Ⅰ)求a1、b1的值,并證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)試確定實(shí)數(shù)λ的值,使數(shù)列{
Tn+λSnn
}
是等差數(shù)列.

查看答案和解析>>

等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若
Sn
Tn
=
3n-1
2n+3
,則
a6
b11
=
224
165
224
165

查看答案和解析>>

等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若
Sn
Tn
=
3n-1
2n+3
,則
a6
b6
=
32
25
32
25

查看答案和解析>>

等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn和Tn,若
Sn
Tn
=
2n
3n+1
,則
a100
b100
等于(  )

查看答案和解析>>

等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,且
Sn
Tn
=
7n+45
n-3
,則使得
an
bn
為整數(shù)的正整數(shù)的n的個(gè)數(shù)是( 。

查看答案和解析>>

 

一、選擇題

A卷:BACDB    DCABD    BA

B卷:BDACD    BDCAB    BA

二、填空題

13.15  

14.210

15.

16.①④

三、解答題:

17. 解:(注:考試中計(jì)算此題可以使用分?jǐn)?shù),以下的解答用的是小數(shù))

   (Ⅰ)同文(Ⅰ)

   (Ⅱ)的概率分別為

隨機(jī)變量的概率分布為

0

1

2

3

P

0.216

0.432

0.288

0.064

………………8分

的數(shù)學(xué)期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

(或利用E=mp=3×0.4=1.2)

的方差為

D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

=0.72.…………………………12分

(或利用D=nq=3×0.4×0.6=0.72)

 

18.解:

   (Ⅰ)

…………4分

所以,的最小正周期,最小值為-2.…………………………6分

   (Ⅱ)列表:

x

0

2

0

-2

0

 

 

 

 

 

 

 

 

 

 

 

 

…………………12分

(19?文)同18?理.

(19?理)解:(Ⅰ)取A1A的中點(diǎn)P,連PM、PN,則PN//AD,

…………………………6分

 

<mark id="ghmei"><meter id="ghmei"><div id="ghmei"></div></meter></mark>

     

     

     

     

     

     

     

     

     

     

     

       (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

             顯然

    利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

    cos∠A1OA=.

    所以二面角的大小為arccos……………………………………………12分

    (20?文)同19理.

    (20?理)(I)證明:當(dāng)q>0時(shí),由a1>0,知an>0,所以Sn>0;………………2分

    當(dāng)-1<q<0時(shí),因?yàn)閍1>0,1-q>0,1-qn>0,所以.

    綜上,當(dāng)q>-1且q≠0時(shí),Sn>0總成立.……………………5分

       (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

            Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

            依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

            ∵Sn>0,∴可得q-kq2>k,

    即k(1+q2)<q,k<.

    ∴k的取值范圍是. ……………………12分

    (21?文)解:f′(x)=3x2+4ax-b.………………………………2分

             設(shè)f′(x)=0的二根為x1,x2,由已知得

             x1=-1,x2≥2,………………………………………………4分

             …………………………7分

            解得

            故a的取值范圍是…………………………………………12分

    (21?理)解:(I)設(shè)橢圓方程

            由2c=4得c=2,又.

            故a=3,b2=a2-c2=5,

            ∴所求的橢圓方程.…………………………………………5分

       (II)點(diǎn)F的坐標(biāo)為(0,2),設(shè)直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

    得(9+5k2)x2+20kx-25=0,………………………………8分

    顯然△>0成立,

    根據(jù)韋達(dá)定理得

    ,                       ①

    .                           ②

    ,

    ,代入①、②得

                                         ③

                                        ④

    由③、④得

     …………………………………………14分

    (22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

    (22.理)(1)證明:令

    原不等式…………………………2分

    單調(diào)遞增,

    ………………………………………………5分

    ,

    單調(diào)遞增,,

     …………………………………………8分

    ………………………………9分

       (Ⅱ)令,上式也成立

    將各式相加

    ……………11分

    ……………………………………………………………………14分

     


    同步練習(xí)冊答案