由cosa + sina =, 得 2sinacosa = sin2a = < 0, ---5分 查看更多

 

題目列表(包括答案和解析)

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周長(zhǎng);       (2)求cos(AC)的值.

【解析】(1)借助余弦定理求出邊c,直接求周長(zhǎng)即可.(2)根據(jù)兩角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,進(jìn)而可求出cosA.sinC可由cosA求出,問題得解.

 

查看答案和解析>>

由下面的條件能得出△ABC為銳角三角形的是( 。

查看答案和解析>>

閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得 sinA+cosB=2sin
A+B
2
cos
A-B
2

(1)類比上述推理方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(2)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A+cox2C-cos2B=1,直接利用閱讀材料及(1)中的結(jié)論試判斷△ABC的形狀.

查看答案和解析>>

下列敘述中:
①在△ABC中,若cosA<cosB,則A>B;
②若函數(shù)f(x)的導(dǎo)數(shù)為f′(x),f(x0)為f(x)的極值的充要條件是f′(x0)=0;
③函數(shù)y=sin(2x+
π
6
)
的圖象可由函數(shù)y=sin2x的圖象向左平移
π
6
個(gè)單位得到;
④在同一直角坐標(biāo)系中,函數(shù)f(x)=sinx的圖象與函數(shù)f(x)=x的圖象僅有三個(gè)公共點(diǎn).
其中正確敘述的個(gè)數(shù)為( 。

查看答案和解析>>

(2012•福建模擬)閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B有α=
A+B
2
,β=
A-B
2

代入③得 sinA+sinB=2sin
A+B
2
cos
A-B
2

(Ⅰ)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin
A+B
2
sin
A-B
2
;
(Ⅱ)若△ABC的三個(gè)內(nèi)角A,B,C滿足cos2A-cos2B=2sin2C,試判斷△ABC的形狀.
(提示:如果需要,也可以直接利用閱讀材料及(Ⅰ)中的結(jié)論)

查看答案和解析>>


同步練習(xí)冊(cè)答案