題目列表(包括答案和解析)
已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過(guò)點(diǎn)(2,1)的直線與橢圓相交于不同的兩點(diǎn),滿足?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
【解析】第一問(wèn)利用設(shè)橢圓的方程為,由題意得
解得
第二問(wèn)若存在直線滿足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),設(shè)兩點(diǎn)的坐標(biāo)分別為,
所以
所以.
又,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,
所以.
即.
所以,解得.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
如圖,已知直線()與拋物線:和圓:都相切,是的焦點(diǎn).
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線交軸于點(diǎn),以、為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為, 直線與軸交點(diǎn)為,連接交拋物線于、兩點(diǎn),求△的面積的取值范圍.
【解析】第一問(wèn)中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點(diǎn)為,又,得,.
代入直線方程得:,∴ 所以,
第二問(wèn)中,由(Ⅰ)知拋物線方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.
令,得切線交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線
第三問(wèn)中,設(shè)直線,代入得結(jié)合韋達(dá)定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點(diǎn)為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn). ………………(2分)
設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.
令,得切線交軸的點(diǎn)坐標(biāo)為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過(guò)點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)為圓心作圓:,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.
【解析】第一問(wèn)利用(1)過(guò)點(diǎn)作直線的垂線,垂足為D.
代入坐標(biāo)得到
第二問(wèn)當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得
第三問(wèn)點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè).
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)時(shí),取得最小值為.
計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.
故圓T的方程為:
設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com