解:ax=2×3-x.故ax'=2×3-xln3×(-1)=-2×3-xln3 即 bn=- 記 Tn=ni=1bi= . ① ∴ 3Tn= . ② ②-①得:2Tn= 可得:Tn=-ln3[(1-] 于是(ni=1bi)=Tn=-ln3. 查看更多

 

題目列表(包括答案和解析)

下列說法中:
(1)y=ax+t(t∈R)的圖象可以由y=ax的圖象平移得到(a>0且a≠1);
(2)y=2x與y=log2x的圖象關(guān)于y軸對(duì)稱;
(3)方程log5(2x+1)=log5(x2-2)的解集為1,3;
(4)函數(shù)y=ln(1+x)+ln(1-x)為奇函數(shù);正確的是
 

查看答案和解析>>

已知函數(shù)f(x)=ex-x (e為自然對(duì)數(shù)的底數(shù)).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集為P,若M={x|
12
≤x≤2}且M∩P≠∅,求實(shí)數(shù)a的取值范圍;(3)已知n∈N﹡,且Sn=∫tn[f(x)+x]dx(t為常數(shù),t≥0),是否存在等比數(shù)列{bn},使得b1+b2+…bn=Sn;若存在,請(qǐng)求出數(shù)列{bn}的通項(xiàng)公式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知y=f(x)是定義在R上奇函數(shù),當(dāng)x<0時(shí),f(x)=x2+ax,且f(2)=4,
(1)求實(shí)數(shù)a的值;
(2)求f(x)的表達(dá)式;
(3)解不等式f(x2+3)+f(-2x)≥0.

查看答案和解析>>

已知不等式x2-2x-3<0的解集為A,不等式x2+x-6<0的解集是B.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求ax2+x+b<0的解集.

查看答案和解析>>

研究問題:“已知關(guān)于x的不等式ax2-bx+c>0,解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,設(shè)
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
參考上述解法,解決如下問題:已知關(guān)于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),則不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>


同步練習(xí)冊(cè)答案