解:(1)由得 ----2分 查看更多

 

題目列表(包括答案和解析)

解:因為有負(fù)根,所以在y軸左側(cè)有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點個數(shù)問題,在坐標(biāo)系中畫出圖形


由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

袋中有50個大小相同的號牌,其中標(biāo)著0號的有5個,標(biāo)著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>

解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數(shù)的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,

(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關(guān)系式;

(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車?yán)塾嬜疃鄮追昼?這種情況下,停車?yán)塾嫊r間是否也是一個隨機變量?

查看答案和解析>>

當(dāng)今的時代是計算機時代,我們知道計算機裝置有一數(shù)據(jù)輸入口A和一個運算結(jié)果的輸出口

B.某同學(xué)編入下列運算程序?qū)?shù)據(jù)輸入且滿足以下性質(zhì):(1)從A輸入1時,從B得到;(2)從A輸入整數(shù)n(n≥2)時,在B得到的結(jié)果f(n)是將前一結(jié)果f(n-1)先乘以奇數(shù)2n-3,再除以奇數(shù)2n+1.試問:

(Ⅰ)從A輸入2,3,4時,從B分別得到什么數(shù)?

(Ⅱ)從A輸入1,2,3,……2002時,從B得到的各數(shù)之和是多少?并說明理由.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

一個計算器裝置有一個數(shù)據(jù)入口A和一輸出運算結(jié)果的出口B,將自然數(shù)列{n}(n≥1)中的各數(shù)依次輸入A口,從B口得到輸出的數(shù)列{an},結(jié)果表明:①從A口輸入n=1時,從B口得;②當(dāng)n≥2時,從A口輸入n,從B口得的結(jié)果an是將前一結(jié)果an-1先乘以自然數(shù)列{n}中的第n-1個奇數(shù),再除以自然數(shù)列{n}中的第n+1個奇數(shù),試問:

(1)

從A口輸入2和3時,從B口分別得到什么數(shù)?

(2)

從A口輸入100時,從B口得到什么數(shù)?說明理由.

查看答案和解析>>


同步練習(xí)冊答案