(2)對(duì)任意的.以記在上的最小值.求的最小值. 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)是定義在D上的函數(shù),若對(duì)任何實(shí)數(shù)α∈(0,1)以及D中的任意兩數(shù)x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)為定義在D上的C函數(shù).

(1)試判斷函數(shù)f1(x)=x2中哪些是各自定義域上的C函數(shù),并說明理由;

(2)已知f(x)是R上的C函數(shù),m是給定的正整數(shù),設(shè)anf(n),n=0,1,2…,m,且a0=0,am=2m,記Sf=a1+a2+…+am.對(duì)于滿足條件的任意函數(shù)f(x),試求Sf的最大值;

(3)若f(x)是定義域?yàn)?B>R的函數(shù),且最小正周期為T,試證明f(x)不是R上的C函數(shù).

查看答案和解析>>

(本小題滿分14分)

設(shè)函數(shù),

(1)求的極值點(diǎn);

(2)對(duì)任意的,以上的最小值,求的最小值.

查看答案和解析>>

(本小題滿分14分)

設(shè)函數(shù),

(1)求的極值點(diǎn);

(2)對(duì)任意的,以上的最小值,求的最小值.

查看答案和解析>>

已知函數(shù)和函數(shù),記

(1)當(dāng)時(shí),若上的最大值是,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),判斷在其定義域內(nèi)是否有極值,并予以證明;

(3)對(duì)任意的,若在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

已知函數(shù)和函數(shù),記

(1)當(dāng)時(shí),若上的最大值是,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),判斷在其定義域內(nèi)是否有極值,并予以證明;

(3)對(duì)任意的,若在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

DCABC CBBAC

11

12   23

13  2

14  4π

15 

16解 (1)             1分

                             2分

由已知有            4分

                       6分

   (2)         10分

       =                      11分

       =                                12分

17解:(1)設(shè)紅球有個(gè),白球個(gè),依題意得   1分

 ,       3分

解得                           

故紅球有6個(gè).                      5分

(2)記“甲取出的球的編號(hào)大”為事件A,

   所有的基本事件有:(1,2),(l,3),(1,4),

(2,1),(2,3),(2,4),

(3,1),(3,2),(3,4),

(4,1),(4,2),(4,3),

共12個(gè)基本事件        8分

事件A包含的基本事件有:(1,2),(1,3),(1,4)(2,1),

(2,3),(3,1),(3,2)(4,1),

共8個(gè)基本事件         11分

所以,.                  12分

18解:(1)底面三邊長(zhǎng)AC=3,BC=4,AB=5,

∠ACB=90°,∴ AC⊥BC,  (2分)

又在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC底面ABC,∴CC1⊥AC,(3分)

  BC.CC1平面BCC1,且BC 與CC1相交

∴ AC⊥平面BCC1; (5分)

而BC1平面BCC1

∴ AC⊥BC1   (6分)

(2)設(shè)CB1與C1B的交點(diǎn)為E,連結(jié)DE,∵ D是AB的中點(diǎn),E是BC1的中點(diǎn),

∴ DE//AC1,  (8分)

∵ DE平面CDB1,AC1平面CDB1,

∴ AC1//平面CDB1;(10分)

(3)   (11分)

=-    (13分)

=20    (14分)

19解:(1)設(shè)橢圓的半長(zhǎng)軸長(zhǎng).半短軸長(zhǎng).半焦距分別為a,b,c,則有

,

由橢圓定義,有             ………1分

……………………………2分

       =   ……………………3分

      ≥        …………………………………………5分

     =             ……………………………………………6分

的最小值為。

(當(dāng)且僅當(dāng)時(shí),即取橢圓上下頂點(diǎn)時(shí),取得最小值 )………………………………………7分

                            

(2)設(shè)的斜率為,

,                  …………………………………………8分

                      …………………………………………9分

  …………………………………………10分

…………………………………………12分

                     …………………………………………13分

 

斜率的取值范圍為()   …………………………………………14分

20解:(1),……………………1分

,,         …………………………………………2分

為等差數(shù)列,                     …………………………………………3分

,                        …………………………………………4分

,                 …………………………………………5分

      …………………………………………7分

(2)                  …………………………………………8分

當(dāng)時(shí),

…………………………………………11分

,

…………………………………………13分

的整數(shù)部分為18。   …………………………………………14分

21解:(1)    ………(1分)

        由解得:    ………(2分)

        當(dāng)時(shí),     ………(3分)

        當(dāng)時(shí),     ………(4分)

        所以,有兩個(gè)極值點(diǎn):

        是極大值點(diǎn),;      ………(5分)

        是極小值點(diǎn),。   ………(6分)

     (2) 過點(diǎn)做直線,與的圖象的另一個(gè)交點(diǎn)為A,則,即   ………(8分)

         已知有解,則

        

          解得   ………(10分)

         當(dāng)時(shí),        ………(11分)

         當(dāng)時(shí),,

         其中當(dāng)時(shí),;………(12分)

          當(dāng)時(shí),    ……(13分)

   所以,對(duì)任意的,的最小值為(其中當(dāng)時(shí),).……(14分)

     (以上答案和評(píng)分標(biāo)準(zhǔn)僅供參考,其它答案,請(qǐng)參照給分)lf

 

 


同步練習(xí)冊(cè)答案