聯(lián)立①②③方程.并代入數(shù)據(jù)得: 查看更多

 

題目列表(包括答案和解析)

第六部分 振動(dòng)和波

第一講 基本知識(shí)介紹

《振動(dòng)和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細(xì)的補(bǔ)充。

一、簡諧運(yùn)動(dòng)

1、簡諧運(yùn)動(dòng)定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點(diǎn),均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運(yùn)動(dòng)的方程

回避高等數(shù)學(xué)工具,我們可以將簡諧運(yùn)動(dòng)看成勻速圓周運(yùn)動(dòng)在某一條直線上的投影運(yùn)動(dòng)(以下均看在x方向的投影),圓周運(yùn)動(dòng)的半徑即為簡諧運(yùn)動(dòng)的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對于一個(gè)給定的勻速圓周運(yùn)動(dòng),m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運(yùn)動(dòng)的定義式①。所以,x方向的位移、速度、加速度就是簡諧運(yùn)動(dòng)的相關(guān)規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。

運(yùn)動(dòng)學(xué)參量的相互關(guān)系:= -ω2

A = 

tgφ= -

3、簡諧運(yùn)動(dòng)的合成

a、同方向、同頻率振動(dòng)合成。兩個(gè)振動(dòng)x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動(dòng)x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當(dāng)φ2-φ1 = 2kπ時(shí)(k = 0,±1,±2,…),合振幅A最大,當(dāng)φ2-φ1 = (2k + 1)π時(shí)(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動(dòng)合成。當(dāng)質(zhì)點(diǎn)同時(shí)參與兩個(gè)垂直的振動(dòng)x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時(shí),這兩個(gè)振動(dòng)方程事實(shí)上已經(jīng)構(gòu)成了質(zhì)點(diǎn)在二維空間運(yùn)動(dòng)的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當(dāng)φ2-φ1 = 2kπ時(shí)(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運(yùn)動(dòng)仍為簡諧運(yùn)動(dòng);

當(dāng)φ2-φ1 = (2k + 1)π時(shí)(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運(yùn)動(dòng)不再是簡諧運(yùn)動(dòng);

當(dāng)φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡諧運(yùn)動(dòng)。

c、同方向、同振幅、頻率相近的振動(dòng)合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運(yùn)動(dòng)x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運(yùn)動(dòng)是振動(dòng),但不是簡諧運(yùn)動(dòng),稱為角頻率為的“拍”現(xiàn)象。

4、簡諧運(yùn)動(dòng)的周期

由②式得:ω=  ,而圓周運(yùn)動(dòng)的角速度和簡諧運(yùn)動(dòng)的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運(yùn)動(dòng)的能量

一個(gè)做簡諧運(yùn)動(dòng)的振子的能量由動(dòng)能和勢能構(gòu)成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復(fù)力系數(shù))k和(相對平衡位置位移)x決定的一個(gè)抽象的概念,而不是具體地指重力勢能或彈性勢能。當(dāng)我們計(jì)量了振子的抽象勢能后,其它的具體勢能不能再做重復(fù)計(jì)量。

6、阻尼振動(dòng)、受迫振動(dòng)和共振

和高考要求基本相同。

二、機(jī)械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)

2、機(jī)械波的描述

a、波動(dòng)圖象。和振動(dòng)圖象的聯(lián)系

b、波動(dòng)方程

如果一列簡諧波沿x方向傳播,振源的振動(dòng)方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個(gè)振動(dòng)質(zhì)點(diǎn)的振動(dòng)方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個(gè)方程展示的是一個(gè)復(fù)變函數(shù)。對任意一個(gè)時(shí)刻t ,都有一個(gè)y(x)的正弦函數(shù),在x-y坐標(biāo)下可以描繪出一個(gè)瞬時(shí)波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動(dòng)方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時(shí),能獨(dú)立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時(shí),在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動(dòng)加強(qiáng)的區(qū)域和振動(dòng)削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個(gè)波源,P表示空間任意一點(diǎn)。

當(dāng)振源的振動(dòng)方向相同時(shí),令振源S1的振動(dòng)方程為y1 = A1cosωt ,振源S1的振動(dòng)方程為y2 = A2cosωt ,則在空間P點(diǎn)(距S1為r1 ,距S2為r2),兩振源引起的分振動(dòng)分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點(diǎn)便出現(xiàn)兩個(gè)頻率相同、初相不同的振動(dòng)疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(shí)(k = 0,±1,±2,…),P點(diǎn)振動(dòng)加強(qiáng),振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(shí)(k = 0,±1,±2,…),P點(diǎn)振動(dòng)削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識(shí)點(diǎn)和高考要求相同。

5、多普勒效應(yīng)

當(dāng)波源或者接受者相對與波的傳播介質(zhì)運(yùn)動(dòng)時(shí),接收者會(huì)發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對介質(zhì)運(yùn)動(dòng)(如圖3所示)

設(shè)接收者以速度v1正對靜止的波源運(yùn)動(dòng)。

如果接收者靜止在A點(diǎn),他單位時(shí)間接收的波的個(gè)數(shù)為f ,

當(dāng)他迎著波源運(yùn)動(dòng)時(shí),設(shè)其在單位時(shí)間到達(dá)B點(diǎn),則= v1 ,、

在從A運(yùn)動(dòng)到B的過程中,接收者事實(shí)上“提前”多接收到了n個(gè)波

n = 

顯然,在單位時(shí)間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運(yùn)動(dòng),只要將上式中的v1代入負(fù)值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質(zhì)運(yùn)動(dòng)(如圖4所示)

設(shè)波源以速度v2正對靜止的接收者運(yùn)動(dòng)。

如果波源S不動(dòng),在單位時(shí)間內(nèi),接收者在A點(diǎn)應(yīng)接收f個(gè)波,故S到A的距離:= fλ 

在單位時(shí)間內(nèi),S運(yùn)動(dòng)至S′,即= v2 。由于波源的運(yùn)動(dòng),事實(shí)造成了S到A的f個(gè)波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個(gè)波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當(dāng)v2背離接收者,或有一定夾角的討論,類似a情形。

c、當(dāng)接收者和波源均相對傳播介質(zhì)運(yùn)動(dòng)

當(dāng)接收者正對波源以速度v1(相對介質(zhì)速度)運(yùn)動(dòng),波源也正對接收者以速度v2(相對介質(zhì)速度)運(yùn)動(dòng),我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關(guān)于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運(yùn)動(dòng)的證明與周期計(jì)算

物理情形:如圖5所示,將一粗細(xì)均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當(dāng)水銀受到一個(gè)初始的擾動(dòng)后,開始在管中振動(dòng)。忽略管壁對汞的阻力,試證明汞柱做簡諧運(yùn)動(dòng),并求其周期。

模型分析:對簡諧運(yùn)動(dòng)的證明,只要以汞柱為對象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動(dòng)方向上的合力(而非整體合力)。當(dāng)簡諧運(yùn)動(dòng)被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時(shí)位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時(shí)的回復(fù)力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運(yùn)動(dòng)。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學(xué)生活動(dòng):如圖6所示,兩個(gè)相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動(dòng),在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動(dòng)摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時(shí),重心不在兩滾輪的正中央。試證明木板做簡諧運(yùn)動(dòng),并求木板運(yùn)動(dòng)的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…

答案:木板運(yùn)動(dòng)周期為2π 。

鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點(diǎn)懸掛在一光滑水平軸上,整個(gè)框架可繞轉(zhuǎn)軸轉(zhuǎn)動(dòng)。桿AB是一導(dǎo)軌,一電動(dòng)松鼠可在導(dǎo)軌上運(yùn)動(dòng),F(xiàn)觀察到松鼠正在導(dǎo)軌上運(yùn)動(dòng),而框架卻靜止不動(dòng),試討論松鼠的運(yùn)動(dòng)是一種什么樣的運(yùn)動(dòng)。

解說:由于框架靜止不動(dòng),松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點(diǎn)為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個(gè)一般位置(如圖7,設(shè)它在導(dǎo)軌方向上距C點(diǎn)為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個(gè)力就是松鼠在導(dǎo)軌方向上的合力。如果我們以C在導(dǎo)軌上的投影點(diǎn)為參考點(diǎn),x就是松鼠的瞬時(shí)位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——

= -k

其中k =  ,對于這個(gè)系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運(yùn)動(dòng)的定義式。

答案:松鼠做簡諧運(yùn)動(dòng)。

評說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進(jìn)一步的定量運(yùn)算也是有必要的。譬如,我們可以求出松鼠的運(yùn)動(dòng)周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運(yùn)動(dòng)

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個(gè)質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

第九部分 穩(wěn)恒電流

第一講 基本知識(shí)介紹

第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導(dǎo)電性”。前者是對于電路的外部計(jì)算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導(dǎo)電的情形有什么區(qū)別。

應(yīng)該說,第一塊的知識(shí)和高考考綱對應(yīng)得比較好,深化的部分是對復(fù)雜電路的計(jì)算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓(xùn)資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。

一、歐姆定律

1、電阻定律

a、電阻定律 R = ρ

b、金屬的電阻率 ρ = ρ0(1 + αt)

2、歐姆定律

a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

b、含源電路歐姆定律

在如圖8-1所示的含源電路中,從A點(diǎn)到B點(diǎn),遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負(fù)極電勢降落,負(fù)極到正極電勢升高(與電流方向無關(guān)),可以得到以下關(guān)系

UA ? IR ? ε ? Ir = UB 

這就是含源電路歐姆定律。

c、閉合電路歐姆定律

在圖8-1中,若將A、B兩點(diǎn)短接,則電流方向只可能向左,含源電路歐姆定律成為

UA + IR ? ε + Ir = UB = UA

 ε = IR + Ir ,或 I = 

這就是閉合電路歐姆定律。值得注意的的是:①對于復(fù)雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個(gè)電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個(gè)電阻的串、并聯(lián)或混聯(lián),但不能包含電源。

二、復(fù)雜電路的計(jì)算

1、戴維南定理:一個(gè)由獨(dú)立源、線性電阻、線性受控源組成的二端網(wǎng)絡(luò),可以用一個(gè)電壓源和電阻串聯(lián)的二端網(wǎng)絡(luò)來等效。(事實(shí)上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡(luò)”——這就成了諾頓定理。)

應(yīng)用方法:其等效電路的電壓源的電動(dòng)勢等于網(wǎng)絡(luò)的開路電壓,其串聯(lián)電阻等于從端鈕看進(jìn)去該網(wǎng)絡(luò)中所有獨(dú)立源為零值時(shí)的等效電阻。

2、基爾霍夫(克?品颍┒

a、基爾霍夫第一定律:在任一時(shí)刻流入電路中某一分節(jié)點(diǎn)的電流強(qiáng)度的總和,等于從該點(diǎn)流出的電流強(qiáng)度的總和。

例如,在圖8-2中,針對節(jié)點(diǎn)P ,有

I2 + I3 = I1 

基爾霍夫第一定律也被稱為“節(jié)點(diǎn)電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。

對于基爾霍夫第一定律的理解,近來已經(jīng)拓展為:流入電路中某一“包容塊”的電流強(qiáng)度的總和,等于從該“包容塊”流出的電流強(qiáng)度的總和。

b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動(dòng)勢的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強(qiáng)度乘積的代數(shù)和。

例如,在圖8-2中,針對閉合回路① ,有

ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

基爾霍夫第二定律事實(shí)上是含源部分電路歐姆定律的變體(☆同學(xué)們可以列方程 UP = … = UP得到和上面完全相同的式子)。

3、Y?Δ變換

在難以看清串、并聯(lián)關(guān)系的電路中,進(jìn)行“Y型?Δ型”的相互轉(zhuǎn)換常常是必要的。在圖8-3所示的電路中

☆同學(xué)們可以證明Δ→ Y的結(jié)論…

Rc = 

Rb = 

Ra = 

Y→Δ的變換稍稍復(fù)雜一些,但我們?nèi)匀豢梢缘玫?/p>

R1 = 

R2 = 

R3 = 

三、電功和電功率

1、電源

使其他形式的能量轉(zhuǎn)變?yōu)殡娔艿难b置。如發(fā)電機(jī)、電池等。發(fā)電機(jī)是將機(jī)械能轉(zhuǎn)變?yōu)殡娔埽桓呻姵、蓄電池是將化學(xué)能轉(zhuǎn)變?yōu)殡娔;光電池是將光能轉(zhuǎn)變?yōu)殡娔;原子電池是將原子核放射能轉(zhuǎn)變?yōu)殡娔;在電子設(shè)備中,有時(shí)也把變換電能形式的裝置,如整流器等,作為電源看待。

電源電動(dòng)勢定義為電源的開路電壓,內(nèi)阻則定義為沒有電動(dòng)勢時(shí)電路通過電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時(shí)的電動(dòng)勢和內(nèi)阻的值。

例如,電動(dòng)勢、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構(gòu)成的新電源的電動(dòng)勢ε和內(nèi)阻r分別為(☆師生共同推導(dǎo)…)

ε = 

r = 

2、電功、電功率

電流通過電路時(shí),電場力對電荷作的功叫做電功W。單位時(shí)間內(nèi)電場力所作的功叫做電功率P 。

計(jì)算時(shí),只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。

對非純電阻電路,電功和電熱的關(guān)系依據(jù)能量守恒定律求解。 

四、物質(zhì)的導(dǎo)電性

在不同的物質(zhì)中,電荷定向移動(dòng)形成電流的規(guī)律并不是完全相同的。

1、金屬中的電流

即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。

2、液體導(dǎo)電

能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負(fù)離子導(dǎo)電是液體導(dǎo)電的特點(diǎn)(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會(huì)離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動(dòng)形成電流)。

在電解液中加電場時(shí),在兩個(gè)電極上(或電極旁)同時(shí)產(chǎn)生化學(xué)反應(yīng)的過程叫作“電解”。電解的結(jié)果是在兩個(gè)極板上(或電極旁)生成新的物質(zhì)。

液體導(dǎo)電遵從法拉第電解定律——

法拉第電解第一定律:電解時(shí)在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強(qiáng)度、跟通電時(shí)間成正比。表達(dá)式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當(dāng)量,電化當(dāng)量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當(dāng)量在數(shù)值上等于通過1C電量時(shí)析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)

法拉第電解第二定律:物質(zhì)的電化當(dāng)量K和它的化學(xué)當(dāng)量成正比。某種物質(zhì)的化學(xué)當(dāng)量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價(jià)n的比值,即 K =  ,而F為法拉第常數(shù),對任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。

將兩個(gè)定律聯(lián)立可得:m = Q 。

3、氣體導(dǎo)電

氣體導(dǎo)電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動(dòng)的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——

a、被激放電

在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會(huì)有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會(huì)發(fā)射電子,這些“載流子”均會(huì)在電場力作用下產(chǎn)生定向移動(dòng)形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

b、自激放電

但是,當(dāng)電場足夠強(qiáng),電子動(dòng)能足夠大,它們和中性氣體相碰撞時(shí),可以使中性分子電離,即所謂碰撞電離。同時(shí),在正離子向陰極運(yùn)動(dòng)時(shí),由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時(shí)間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。

常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

4、超導(dǎo)現(xiàn)象

據(jù)金屬電阻率和溫度的關(guān)系,電阻率會(huì)隨著溫度的降低和降低。當(dāng)電阻率降為零時(shí),稱為超導(dǎo)現(xiàn)象。電阻率為零時(shí)對應(yīng)的溫度稱為臨界溫度。超導(dǎo)現(xiàn)象首先是荷蘭物理學(xué)家昂尼斯發(fā)現(xiàn)的。

超導(dǎo)的應(yīng)用前景是顯而易見且相當(dāng)廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價(jià)值不大,為了解決這個(gè)矛盾,科學(xué)家們致力于尋找或合成臨界溫度比較切合實(shí)際的材料就成了當(dāng)今前沿科技的一個(gè)熱門領(lǐng)域。當(dāng)前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過100K,當(dāng)然,這個(gè)溫度距產(chǎn)業(yè)化的期望值還很遠(yuǎn)。

5、半導(dǎo)體

半導(dǎo)體的電阻率界于導(dǎo)體和絕緣體之間,且ρ

查看答案和解析>>

第八部分 靜電場

第一講 基本知識(shí)介紹

在奧賽考綱中,靜電學(xué)知識(shí)點(diǎn)數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個(gè)別知識(shí)點(diǎn)上,奧賽的要求顯然更加深化了:如非勻強(qiáng)電場中電勢的計(jì)算、電容器的連接和靜電能計(jì)算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運(yùn)動(dòng)問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關(guān)注的是電場中更本質(zhì)的內(nèi)容,關(guān)注的是縱向的深化和而非橫向的綜合。

一、電場強(qiáng)度

1、實(shí)驗(yàn)定律

a、庫侖定律

內(nèi)容;

條件:⑴點(diǎn)電荷,⑵真空,⑶點(diǎn)電荷靜止或相對靜止。事實(shí)上,條件⑴和⑵均不能視為對庫侖定律的限制,因?yàn)榀B加原理可以將點(diǎn)電荷之間的靜電力應(yīng)用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進(jìn)行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認(rèn)為k′= k /εr)。只有條件⑶,它才是靜電學(xué)的基本前提和出發(fā)點(diǎn)(但這一點(diǎn)又是常常被忽視和被不恰當(dāng)?shù)亍熬C合應(yīng)用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強(qiáng)度

a、電場強(qiáng)度的定義

電場的概念;試探電荷(檢驗(yàn)電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強(qiáng)的計(jì)算

決定電場強(qiáng)弱的因素有兩個(gè):場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強(qiáng)決定式看出——

⑴點(diǎn)電荷:E = k

結(jié)合點(diǎn)電荷的場強(qiáng)和疊加原理,我們可以求出任何電場的場強(qiáng),如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點(diǎn)P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內(nèi)部:E內(nèi) = 0

外部:E = k ,其中r指考察點(diǎn)到球心的距離

如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個(gè)式子的物理意義可以參照萬有引力定律當(dāng)中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點(diǎn)移到參考點(diǎn)P0時(shí)電場力所做的功W與該電荷電量q的比值,即

U = 

參考點(diǎn)即電勢為零的點(diǎn),通常取無窮遠(yuǎn)或大地為參考點(diǎn)。

和場強(qiáng)一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點(diǎn)電荷

以無窮遠(yuǎn)為參考點(diǎn),U = k

b、均勻帶電球殼

以無窮遠(yuǎn)為參考點(diǎn),U = k ,U內(nèi) = k

3、電勢的疊加

由于電勢的是標(biāo)量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點(diǎn)電荷電勢的表達(dá)式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導(dǎo)體

靜電感應(yīng)→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結(jié)為以下三層含義——

a、導(dǎo)體內(nèi)部的合場強(qiáng)為零;表面的合場強(qiáng)不為零且一般各處不等,表面的合場強(qiáng)方向總是垂直導(dǎo)體表面。

b、導(dǎo)體是等勢體,表面是等勢面。

c、導(dǎo)體內(nèi)部沒有凈電荷;孤立導(dǎo)體的凈電荷在表面的分布情況取決于導(dǎo)體表面的曲率。

2、靜電屏蔽

導(dǎo)體殼(網(wǎng)罩)不接地時(shí),可以實(shí)現(xiàn)外部對內(nèi)部的屏蔽,但不能實(shí)現(xiàn)內(nèi)部對外部的屏蔽;導(dǎo)體殼(網(wǎng)罩)接地后,既可實(shí)現(xiàn)外部對內(nèi)部的屏蔽,也可實(shí)現(xiàn)內(nèi)部對外部的屏蔽。

四、電容

1、電容器

孤立導(dǎo)體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導(dǎo)體的形狀和位置關(guān)系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr =  。

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運(yùn)”電荷做功W就是圖中陰影的面積,這也就是電容器的儲(chǔ)能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲(chǔ)存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強(qiáng)E表示。

對平行板電容器 E = E2 

認(rèn)為電場能均勻分布在電場中,則單位體積的電場儲(chǔ)能 w = E2 。而且,這以結(jié)論適用于非勻強(qiáng)電場。

五、電介質(zhì)的極化

1、電介質(zhì)的極化

a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時(shí)每個(gè)分子的正、負(fù)電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質(zhì)的極化:當(dāng)介質(zhì)中存在外電場時(shí),無極分子會(huì)變?yōu)橛袠O分子,有極分子會(huì)由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負(fù)電和正電,但這些電荷并不能自由移動(dòng),因此稱為束縛電荷,除了電介質(zhì),導(dǎo)體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動(dòng)的電荷稱為自由電荷。事實(shí)上,導(dǎo)體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴(yán)格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動(dòng)的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強(qiáng)和電場力

【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點(diǎn)的場強(qiáng)均為零。

【模型分析】這是一個(gè)疊加原理應(yīng)用的基本事例。

如圖7-5所示,在球殼內(nèi)取一點(diǎn)P ,以P為頂點(diǎn)做兩個(gè)對頂?shù)、頂角很小的錐體,錐體與球面相交得到球面上的兩個(gè)面元ΔS1和ΔS2 ,設(shè)球面的電荷面密度為σ,則這兩個(gè)面元在P點(diǎn)激發(fā)的場強(qiáng)分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關(guān)系,引進(jìn)錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點(diǎn)激發(fā)的合場強(qiáng)為零。

同理,其它各個(gè)相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強(qiáng)均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強(qiáng)度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點(diǎn)激發(fā)的場強(qiáng)大小為

ΔE = k ,方向由P指向O點(diǎn)。

無窮多個(gè)這樣的面元激發(fā)的場強(qiáng)大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預(yù)見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設(shè)為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學(xué)員思考〗如果這個(gè)半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強(qiáng)又是多少?

〖推薦解法〗將半球面看成4個(gè)球面,每個(gè)球面在x、y、z三個(gè)方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個(gè)方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負(fù)電的一方)。

【物理情形2】有一個(gè)均勻的帶電球體,球心在O點(diǎn),半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個(gè)球形空腔,空腔球心在O′點(diǎn),半徑為R′,= a ,如圖7-7所示,試求空腔中各點(diǎn)的場強(qiáng)。

【模型分析】這里涉及兩個(gè)知識(shí)的應(yīng)用:一是均勻帶電球體的場強(qiáng)定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補(bǔ)法。

將球體和空腔看成完整的帶正電的大球和帶負(fù)電(電荷體密度相等)的小球的集合,對于空腔中任意一點(diǎn)P ,設(shè) = r1 , = r2 ,則大球激發(fā)的場強(qiáng)為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強(qiáng)為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強(qiáng)電場。

〖學(xué)員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個(gè)電量為q的點(diǎn)電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應(yīng)用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點(diǎn),過圓心跟環(huán)面垂直的軸線上有P點(diǎn), = r ,以無窮遠(yuǎn)為參考點(diǎn),試求P點(diǎn)的電勢U。

【模型分析】這是一個(gè)電勢標(biāo)量疊加的簡單模型。先在圓環(huán)上取一個(gè)元段ΔL ,它在P點(diǎn)形成的電勢

ΔU = k

環(huán)共有段,各段在P點(diǎn)形成的電勢相同,而且它們是標(biāo)量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個(gè)總電量的分布不是均勻的,結(jié)論會(huì)改變嗎?

〖答〗UP =  ;結(jié)論不會(huì)改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當(dāng)電量均勻分布時(shí),球心電勢為多少?球內(nèi)(包括表面)各點(diǎn)電勢為多少?(2)當(dāng)電量不均勻分布時(shí),球心電勢為多少?球內(nèi)(包括表面)各點(diǎn)電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內(nèi)任一點(diǎn)的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個(gè)完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內(nèi)任一點(diǎn)的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。

〖答〗(1)球心、球內(nèi)任一點(diǎn)的電勢均為k ;(2)球心電勢仍為k ,但其它各點(diǎn)的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。

【相關(guān)應(yīng)用】如圖7-9所示,球形導(dǎo)體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個(gè)電量為+Q的點(diǎn)電荷,試求球心處的電勢。

【解析】由于靜電感應(yīng),球殼的內(nèi)、外壁形成兩個(gè)帶電球殼。球心電勢是兩個(gè)球殼形成電勢、點(diǎn)電荷形成電勢的合效果。

根據(jù)靜電感應(yīng)的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應(yīng)用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習(xí)〗如圖7-10所示,兩個(gè)極薄的同心導(dǎo)體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個(gè)電量為+q的點(diǎn)電荷。試求:(1)A球殼的感應(yīng)電荷量;(2)外球殼的電勢。

〖解說〗這是一個(gè)更為復(fù)雜的靜電感應(yīng)情形,B殼將形成圖示的感應(yīng)電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應(yīng)電荷分布都是不均勻的。

此外,我們還要用到一個(gè)重要的常識(shí):接地導(dǎo)體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個(gè)合效果,它是點(diǎn)電荷q 、A殼、B殼(帶同樣電荷時(shí))單獨(dú)存在時(shí)在A中形成的的電勢的代數(shù)和,所以,當(dāng)我們以球心O點(diǎn)為對象,有

UO = k + k + k = 0

QB應(yīng)指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學(xué)員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點(diǎn)去列?(答:不能,非均勻帶電球殼的球心以外的點(diǎn)不能應(yīng)用定式!)

基于剛才的討論,求B的電勢時(shí)也只能求B的球心的電勢(獨(dú)立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實(shí)線表示三根首尾相連的等長絕緣細(xì)棒,每根棒上的電荷分布情況與絕緣棒都換成導(dǎo)體棒時(shí)完全相同。點(diǎn)A是Δabc的中心,點(diǎn)B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點(diǎn)的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細(xì)棒上的電荷分布既不均勻、三根細(xì)棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應(yīng)用。若用元段分割→疊加,也具有相當(dāng)?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細(xì)棒的電荷分布雖然復(fù)雜,但相對各自的中點(diǎn)必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點(diǎn)的電勢貢獻(xiàn)都相同(可設(shè)為U1);②ab棒、ac棒對B點(diǎn)的電勢貢獻(xiàn)相同(可設(shè)為U2);③bc棒對A、B兩點(diǎn)的貢獻(xiàn)相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻(xiàn)不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導(dǎo)體板構(gòu)成,各導(dǎo)體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點(diǎn)O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點(diǎn)具有對稱性,但電量各不相同,因此對O點(diǎn)的電勢貢獻(xiàn)也不相同,所以應(yīng)該想一點(diǎn)辦法——

我們用“填補(bǔ)法”將電量不對稱的情形加以改觀:先將每一塊導(dǎo)體板復(fù)制三塊,作成一個(gè)正四面體盒子,然后將這四個(gè)盒子位置重合地放置——構(gòu)成一個(gè)有四層壁的新盒子。在這個(gè)新盒子中,每個(gè)壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個(gè)等勢面、整個(gè)盒子也是一個(gè)等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學(xué)員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因?yàn)槿切胃鬟吷想妱蓦m然相等,但中點(diǎn)的電勢和邊上的并不相等。)

〖反饋練習(xí)〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點(diǎn)C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點(diǎn)對稱的兩點(diǎn),已知P點(diǎn)的電勢為UP ,試求Q點(diǎn)的電勢UQ 。

〖解說〗這又是一個(gè)填補(bǔ)法的應(yīng)用。將半球面補(bǔ)成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時(shí)P、Q的電勢不會(huì)有任何改變。

而換一個(gè)角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點(diǎn),UP = k + U半球面

其中 U半球面顯然和為填補(bǔ)時(shí)Q點(diǎn)的電勢大小相等、符號(hào)相反,即 U半球面= -UQ 

以上的兩個(gè)關(guān)系已經(jīng)足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點(diǎn)相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點(diǎn)電荷。試問:(1)將單位正電荷從O點(diǎn)沿移到D點(diǎn),電場力對它做了多少功?(2)將單位負(fù)電荷從D點(diǎn)沿AB的延長線移到無窮遠(yuǎn)處去,電場力對它做多少功?

【模型分析】電勢疊加和關(guān)系WAB = q(UA - UB)= qUAB的基本應(yīng)用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關(guān)系即可。

【答案】(1);(2) 

【相關(guān)應(yīng)用】在不計(jì)重力空間,有A、B兩個(gè)帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點(diǎn)。試問:(1)若解除A球的固定,它能獲得的最大動(dòng)能是多少?(2)若同時(shí)解除兩球的固定,它們各自的獲得的最大動(dòng)能是多少?(3)未解除固定時(shí),這個(gè)系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計(jì)算,另啟用動(dòng)量守恒關(guān)系;第(3)問是在前兩問基礎(chǔ)上得出的必然結(jié)論…(這里就回到了一個(gè)基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個(gè)點(diǎn)電荷的環(huán)境中,我們通常說“兩個(gè)點(diǎn)電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 

〖思考〗設(shè)三個(gè)點(diǎn)電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個(gè)點(diǎn)電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應(yīng)用〗如圖7-14所示,三個(gè)帶同種電荷的相同金屬小球,每個(gè)球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上,F(xiàn)將其中的一根繩子剪斷,三個(gè)球?qū)㈤_始運(yùn)動(dòng)起來,試求中間這個(gè)小球的最大速度。

〖解〗設(shè)剪斷的是1、3之間的繩子,動(dòng)力學(xué)分析易知,2球獲得最大動(dòng)能時(shí),1、2之間的繩子與2、3之間的繩子剛好應(yīng)該在一條直線上。而且由動(dòng)量守恒知,三球不可能有沿繩子方向的速度。設(shè)2球的速度為v ,1球和3球的速度為v′,則

動(dòng)量關(guān)系 mv + 2m v′= 0

能量關(guān)系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導(dǎo)體和電介質(zhì)

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠(yuǎn)小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強(qiáng);(3)兩板間的電勢差。

【模型分析】由于靜電感應(yīng),A、B兩板的四個(gè)平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強(qiáng)為零的結(jié)論還是存在的);這里應(yīng)注意金屬板“很大”的前提條件,它事實(shí)上是指物理無窮大,因此,可以應(yīng)用無限大平板的場強(qiáng)定式。

為方便解題,做圖7-15,忽略邊緣效應(yīng),四個(gè)面的電荷分布應(yīng)是均勻的,設(shè)四個(gè)面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內(nèi)部空間場強(qiáng)為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內(nèi)部空間場強(qiáng)為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個(gè)面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強(qiáng)就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強(qiáng)2πk,方向垂直A板向外,A、B板之間空間場強(qiáng)2πk,方向由A垂直指向B,B板外側(cè)空間場強(qiáng)2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學(xué)員思考〗如果兩板帶等量異號(hào)的凈電荷,兩板的外側(cè)空間場強(qiáng)等于多少?(答:為零。)

〖學(xué)員討論〗(原模型中)作為一個(gè)電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會(huì)影響四個(gè)面的電荷分布(答:不會(huì))?是否會(huì)影響三個(gè)空間的場強(qiáng)(答:只會(huì)影響Ⅱ空間的場強(qiáng))?

〖學(xué)員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當(dāng)兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強(qiáng);(3)介質(zhì)表面的極化電荷。

【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強(qiáng),故對電荷的分布情況肯定有影響。設(shè)真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個(gè)電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強(qiáng)可以根據(jù)E = 關(guān)系求解,比較常規(guī)(上下部分的場強(qiáng)相等)。

上下部分的電量是不等的,但場強(qiáng)居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當(dāng)k 、σ同時(shí)改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當(dāng)于在真空中形成了一個(gè)新的電場,正是這個(gè)電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關(guān)系是由兩個(gè)帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個(gè)空間的場強(qiáng)均為 ;(3)Q 。

〖思考應(yīng)用〗一個(gè)帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導(dǎo)體表面接觸的介質(zhì)表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關(guān)計(jì)算

【物理情形1】由許多個(gè)電容為C的電容器組成一個(gè)如圖7-17所示的多級(jí)網(wǎng)絡(luò),試問:(1)在最后一級(jí)的右邊并聯(lián)一個(gè)多大電容C′,可使整個(gè)網(wǎng)絡(luò)的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡(luò)的級(jí)數(shù),整個(gè)網(wǎng)絡(luò)A、B兩端的總電容是多少?

【模型分析】這是一個(gè)練習(xí)電容電路簡化基本事例。

第(1)問中,未給出具體級(jí)數(shù),一般結(jié)論應(yīng)適用特殊情形:令級(jí)數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因?yàn)椤盁o限”,所以“無限加一級(jí)后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關(guān)模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個(gè)端點(diǎn)之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進(jìn)行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進(jìn)新的符號(hào)表達(dá),而是直接將變換后的量值標(biāo)示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個(gè)電容器完全相同,電源電動(dòng)勢ε1 = 3.0V ,ε2 = 4.5V,開關(guān)K1和K2接通前電容器均未帶電,試求K1和K2接通后三個(gè)電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個(gè)考查電容器電路的基本習(xí)題,解題的關(guān)鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關(guān)系:++= 0

電勢關(guān)系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應(yīng)用】如圖7-22所示,由n個(gè)單元組成的電容器網(wǎng)絡(luò),每一個(gè)單元由三個(gè)電容器連接而成,其中有兩個(gè)的電容為3C ,另一個(gè)的電容為3C 。以a、b為網(wǎng)絡(luò)的輸入端,a′、b′為輸出端,今在a、b間加一個(gè)恒定電壓U ,而在a′b′間接一個(gè)電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲(chǔ)存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個(gè)單元的三個(gè)電容器儲(chǔ)存的總電能是多少?

【解說】這是一個(gè)結(jié)合網(wǎng)絡(luò)計(jì)算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計(jì)算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經(jīng)驗(yàn)公式為 Uk = 

再算能量儲(chǔ)存就不難了。

(2)斷開前,可以算出第一單元的三個(gè)電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時(shí),C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關(guān)系:Q1′= Q3

          Q2′+ Q3′= 

電勢關(guān)系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲(chǔ)能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學(xué)員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲(chǔ)能是否一樣?(答:不一樣;在相互充電的過程中,導(dǎo)線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

第二部分  牛頓運(yùn)動(dòng)定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時(shí)性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時(shí)效(同增同減)

c、無條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個(gè)環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng),F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過程中(      

A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對地做加速運(yùn)動(dòng)

B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。

較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動(dòng)?因?yàn)槿耸强梢孕巫儭⒅匦目梢哉{(diào)節(jié)的特殊“物體”)

此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個(gè)問題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時(shí)性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對斜面靜止。試求此時(shí)繩子的張力T 。

解說:當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來反推)。

知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動(dòng)力學(xué)問題中,如果遇到幾個(gè)研究對象時(shí),就會(huì)面臨如何處理對象之間的力和對象與外界之間的力問題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個(gè)對象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個(gè)對象不具有共同的加速度時(shí),一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個(gè)長為L的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。

第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動(dòng),結(jié)論不變。

若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會(huì);(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無相對滑動(dòng),水平推力F應(yīng)為多少?

解說:

此題對象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無相對運(yùn)動(dòng)?如果沒有,說明理由;如果有,求出這個(gè)F′的值。

解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時(shí),沒有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示,F(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。

(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動(dòng))思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。

解說:這是一個(gè)比較特殊的“連接體問題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動(dòng)過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時(shí)間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動(dòng)力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>


同步練習(xí)冊答案