21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過、作軌跡的切線、,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

1.C  2.B  3.B  4.D  5.C   6.A  7.B  8.B  9.D  10.C

11.   12.1                13.        14.4            15.

16.當(dāng)a>1時,有,∴,∴,∴,∴當(dāng)0<a<1時,有,∴.

綜上,當(dāng)a>1時,;當(dāng)0<a<1時,

17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:

(Ⅱ)出現(xiàn)奇數(shù)枚正面朝上的概率為:

∴出現(xiàn)偶數(shù)枚正面朝上的概率為,∴概率相等.

18.(Ⅰ)在梯形ABCD中,∵,

 

 

∴四邊形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交線為AC,∴平面ACFE.

(Ⅱ)當(dāng)時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則

,∴∴MFAN,

∴四邊形ANFM是平行四邊形. ∴

又∵平面BDF,平面BDF. ∴平面BDF.

19.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.

∴橢圓C的方程為

(Ⅱ),設(shè)點,則

,

,∴,∴的最小值為6.

20.(Ⅰ)設(shè),

單調(diào)遞增.

(Ⅱ)當(dāng)時,,又,即

      當(dāng)時,,,由,得.

的值域為

(Ⅲ)當(dāng)x=0時,,∴x=0為方程的解.

當(dāng)x>0時,,∴,∴

當(dāng)x<0時,,∴,∴

即看函數(shù)

與函數(shù)圖象有兩個交點時k的取值范圍,應(yīng)用導(dǎo)數(shù)畫出的大致圖象,∴,∴

 

21.(Ⅰ)令n=1有,,∴,∴.

 

(Ⅱ)∵……① ∴當(dāng)時,有……②

①-②有,

將以上各式左右兩端分別相乘,得,∴

當(dāng)n=1,2時也成立,∴.

(Ⅲ),當(dāng)時,

,

當(dāng)時,

當(dāng)時,

當(dāng)時,

 

 

 

 


同步練習(xí)冊答案