試討論方程(1-k)x2+(3-k2)y2=4(k∈R)所表示的曲線, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)設(shè)函數(shù)),

(Ⅰ)令,討論的單調(diào)性;

(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;

(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),,試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分14分)

已知函數(shù)其中實數(shù)。

(1)若a=-2,求曲線在點處的切線方程;

(2)若在x=1處取得極值,試討論的單調(diào)性。

 

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)),
(Ⅰ)令,討論的單調(diào)性;
(Ⅱ)關(guān)于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè),試探究是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

(本小題滿分14分)對于函數(shù),若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底,為常數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

(本小題滿分14分)對于函數(shù),若存在常數(shù),對于任意,不等式都成立,則稱直線是函數(shù)的分界線. 已知函數(shù)為自然對數(shù)的底,為常數(shù)).

(Ⅰ)討論函數(shù)單調(diào)性;

(Ⅱ)設(shè),試探究函數(shù)與函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

一、           選擇題:

1、答案:D

解:②表示垂直于同一平面的兩條直線互相平行;

③表示垂直于同一直線的兩個平面互相平行;

2、答案:D ;

解:,非P真;又真,所以選D;

3、答案:B ;

解:本題考查了正方體堆壘問題及數(shù)列通項公式的求解.列出該數(shù)列的前幾項,通過相鄰項間的關(guān)系可得出該數(shù)列的規(guī)律而得出一等差數(shù)列.

由圖示可得,該正方體的個數(shù)所組成的數(shù)列1,3,6,…, 其后一項減前一項得一數(shù)列2,3,4,…為一個等差數(shù)列.由此可得第6層的正方體的個數(shù)為1,3,6,10,15,21,… ,

故應(yīng)選B.

4、答案:D ;

解:的圖象向右平移單位后得到:,故選D;

5、答案:B ;

解:據(jù)題意可知集合A表示函數(shù)的定義域,,易化簡得,由于BA,故當(dāng)時,即時易知符合題意;當(dāng)時,,要使BA,結(jié)合數(shù)軸知需(經(jīng)驗證符合題意)或(經(jīng)驗證不合題意舍去),解得,故綜上所述可知滿足條件的的取值范圍是,故答案為B;

6、答案:D ;

解:由圖象變換可以得到兩個圖象間的關(guān)系,函數(shù)是由函數(shù)的圖象向右平移一個單位得到,而是由函數(shù)的圖象關(guān)于y軸對稱得到再向右平移一個單位得到,故兩函數(shù)的圖象關(guān)于直線對稱。故選D

7、答案:B ;

解:兩直線平行,則其斜率相等,利用兩點間直線的斜率公式可以得兩字母間的關(guān)系,于是可得兩點間的距離.

由題意得

所以故應(yīng)選B.

8、答案:B ;

解:由于,故函數(shù)的定義域為,根據(jù)已知0<a<b<c,則易將函數(shù)解析式化簡為= ,故且其定義域關(guān)于原點對稱,即函數(shù)為偶函數(shù),其圖象關(guān)于y軸對稱。故應(yīng)選B.

9、答案:C ;

解:本題考查直線的斜率,由垂直關(guān)系得兩直線的斜率之積為,再由均值不等式轉(zhuǎn)化轉(zhuǎn)化得出不等關(guān)系式,分類討論得出的最小值.由題意,

∵兩直線互相垂直,

,即,

,則.

當(dāng)時,;當(dāng)時,.

綜合得的最小值為. 故應(yīng)選C.

10、答案:C ;

解:由題意可知,存在,使,即,從函數(shù)定義出發(fā),畫出映射幫助思考,從A到B再到C是由題意可得,如果繼續(xù)對C集合中的,應(yīng)用法則,則會得到,從B到C再到D的映射為,即存在,使,即函數(shù)過點,即方程有解,易知在實數(shù)集R上無解故選D。

二、           填空題:

11、答案:1 ;

解:根據(jù)集合中元素的確定性,我們不難得到兩集合的元素是相同的,這樣需要列方程組分類討論,顯然復(fù)雜又煩瑣.這時若能發(fā)現(xiàn)0這個特殊元素,和中的a不為0的隱含信息,就能得到如下解法.由已知得=0,及a≠0,所以b=0,于是a2=1,即a=1或a=-1,又根據(jù)集合中元素的互異性a=1應(yīng)舍去,因而a=-1,故a2008+b2008=(-1) 2008=1.

12、答案:120度;

解:依題意可知:A、O、B、C構(gòu)成平形四邊形,,故的內(nèi)角C為120度;

13、答案:;

解:

.

14、答案: ;

解:,設(shè),依題意可知:,又P在曲線上,故,故點P的坐標(biāo)為 ;

15、答案:49 ;

解:本題考查用取特殊值法進行驗證.由題意分析,

不妨設(shè)各個格中的數(shù)都為1, 則符合題意要求,所以表中所有數(shù)字之和為49.

三、            解答題:

16、 解:(1)因為              

,   

所以.          

(2)由

亦即

,

當(dāng)且僅當(dāng)時取得等號.

故當(dāng)時有有最大值.  

17、 解:(Ⅰ)從九個小球中任取三個共有種取法,它們是等可能的.設(shè)恰好有一球編號是3的倍數(shù)的事件為A,

.

(Ⅱ)設(shè)至少有一球編號是3的倍數(shù)的事件為B,

.

(Ⅲ)設(shè)三個小球編號之和是3的倍數(shù)的事件為C,設(shè)集合, ,則取出三個小球編號之和為3的倍數(shù)的取法共有種,則.

18、解:設(shè)橢圓方程為

(Ⅰ)易得所求橢圓方程為.

(Ⅱ)解法一:由題意知直線的斜率存在,設(shè)直線的方程為

,消去y得關(guān)于x的方程:

由直線與橢圓相交于A、B兩點,解得

又由韋達定理得原點到直線的距離.

兩邊平方整理得:(*)∵

整理得:      從而的最大值為,此時代入方程(*)得  

所以,所求直線方程為:.

19、(Ⅰ)解:(1)3-k2>1-k>0k∈(-1,1),方程所表示的曲線是焦點在x軸上的橢圓;

(2) 1-k>3-k2>0k∈(-,-1),方程所表示的曲線是焦點在y軸上的橢圓;

(3)1-k=3-k2>0k=-1,表示的是一個圓;

(4)(1-k)(3-k2)<0k∈(-∞,-)∪(1,),表示的是雙曲線;

(5)k=1,k=-,表示的是兩條平行直線;k=,表示的圖形不存在.

(Ⅱ)解:依題意,設(shè)雙曲線的方程為=1(a>0,b>0).∵e==,c2=a2+b2,∴a2=4b2.

設(shè)Mx,y)為雙曲線上任一點,則|PM|2=x2+(y-5)2=b2-1)+(y-5)2=y-4)2+5-b2(|y|≥2b).

①若4≥2b,則當(dāng)y=4時,|PM|min2=5-b2=4,得b2=1,a2=4.從而所求雙曲線方程為x2=1.

②若4<2b,則當(dāng)y=2b時,|PM|min2=4b2-20b+25=4,得b=(舍去b=),b2=,a2=49.

從而所求雙曲線方程為=1.

20、解:如圖,連結(jié),由中點,則從而.故AM和所成的角為所成的角,易證。所以,故所成的角為。又設(shè)AB的中點為Q,則從而CN與AM所成的角就是(或其補角)。易求得中,由余弦定理得,故所成的角為。

21、解  (1)當(dāng)a=1,b=?2時,f(x)=x2?x?3,

由題意可知x=x2?x?3,得x1=?1,x2=3 

故當(dāng)a=1,b=?2時,f(x)的兩個不動點為?1,3 

(2)∵f(x)=ax2+(b+1)x+(b?1)(a≠0)恒有兩個不動點,

x=ax2+(b+1)x+(b?1),

ax2+bx+(b?1)=0恒有兩相異實根

∴Δ=b2?4ab+4a>0(b∈R)恒成立 

于是Δ′=(4a)2?16a<0解得0<a<1

故當(dāng)b∈R,f(x)恒有兩個相異的不動點時,0<a<1 

(3)由題意A、B兩點應(yīng)在直線y=x上,設(shè)A(x1,x1),B(x2,x2)

又∵A、B關(guān)于y=kx+對稱 

k=?1  設(shè)AB的中點為M(x′,y′)

x1,x2是方程ax2+bx+(b?1)=0的兩個根 

x′=y′=

又點M在直線上有,

a>0,∴2a+≥2當(dāng)且僅當(dāng)2a=a=∈(0,1)時取等號,

b≥?,得b的最小值? 

 

作者:     湖南省衡陽市祁東縣育賢中學(xué)  高明生  彭鐵軍

PC:       421600

TEL:      0734---6184532

Cellphone: 13187168216

E―mail:   hunanqidonggms@163.com

QQ:        296315069

 

 

 


同步練習(xí)冊答案