20. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a

    D、E分別為棱AB、BC的中點(diǎn), M為棱AA1­上的點(diǎn),二面角MDEA為30°.

   (1)求MA的長(zhǎng);w.w.w.k.s.5.u.c.o.m      

   (2)求點(diǎn)C到平面MDE的距離。

查看答案和解析>>

(本小題滿(mǎn)分12分)某校高2010級(jí)數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿(mǎn)分12分)

某廠(chǎng)有一面舊墻長(zhǎng)14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠(chǎng)房,工程條件是①建1米新墻費(fèi)用為a元;②修1米舊墻的費(fèi)用為元;③拆去1米舊墻,用所得材料建1米新墻的費(fèi)用為元,經(jīng)過(guò)討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠(chǎng)房一面的邊長(zhǎng);(2)矩形廠(chǎng)房利用舊墻的一面邊長(zhǎng)x≥14.問(wèn)如何利用舊墻,即x為多少米時(shí),建墻費(fèi)用最省?(1)、(2)兩種方案哪個(gè)更好?

 

查看答案和解析>>

(本小題滿(mǎn)分12分)

已知a,b是正常數(shù), ab, x,y(0,+∞).

   (1)求證:,并指出等號(hào)成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時(shí)相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿(mǎn)分12分)

已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR ,x?y=5,求證k≥1.

查看答案和解析>>

一.選擇題

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

A

B

D

B

B

C

B

A

C

D

二.填空題

13. 4 ;          14.  ;      15. 2   ;     16.32 ;

三.解答題.

17.解:(1)  ……………………………2分

  ……………………………4分

  …………………………………………6分

(2)由余弦定理得:

(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)………………9分

  …………………………………………………11分

的面積最大值為  …………………………………………………………12分

18.解:(Ⅰ)由

 …………………2分

   ……………………………………4分

(Ⅱ)由整理得

∴數(shù)列是以為首項(xiàng),以2為公比的等比數(shù)列, …………………6分

∵當(dāng)時(shí)滿(mǎn)足  ………………………………………8分

(Ⅲ)

  ………………………………………………………………10分

∴當(dāng)時(shí),,當(dāng)時(shí),

高三數(shù)學(xué)(理科)(模擬一)答案第1頁(yè)

即當(dāng)或2時(shí),。當(dāng)時(shí),……2分

19.解:(Ⅰ)擲出點(diǎn)數(shù)x可能是:1,2,3,4.

分別得:。于是的所有取值分別為:0,1,4 .

因此的所有取值為:0,1,2,4,5,8.  …………………………………………2分

當(dāng)時(shí),可取得最大值8,

此時(shí),; ………………………………………………………4分

當(dāng)時(shí)且時(shí),可取得最小值 0.

此時(shí)   …………………………………………………………6分

(Ⅱ)由(1)知的所有取值為:0,1,2,4,5,8.

 ……………………………………………………………7分

當(dāng)時(shí),的所有取值為(2,3)、(4,3)、(3,2),(3,4)即;

當(dāng)時(shí),的所有取值為(2,2)、(4,4)、(4,2),(2,4)即…8分

當(dāng)時(shí),的所有取值為(1,3)、(3,1)即;

當(dāng)時(shí),的所有取值為(1,2)、(2,1)、(1,4),(4,1)即 …9分

所以的分布列為:

0

1

2

4

5

8

…………10分

 

的期望 ………………12分

1.jpg20.解:(Ⅰ)因?yàn)?sub>平面,   

所以平面平面,………………1分

,所以平面,

,又 ………2分

所以平面; ………………………3分

(Ⅱ)因?yàn)?sub>,所以四邊形為菱形,

,

又D為AC中點(diǎn),知 ……………4分

中點(diǎn)F,則平面,從而平面平面………………6分

過(guò),則,

高三數(shù)學(xué)(理科)(模擬一)答案第2頁(yè)

    在中,,故  ……………………………7分

到平面的距離為 …………………………………………8分

(Ⅲ)過(guò),連,則

從而為二面角的平面角,  ……………………………………9分

,所以

中,………………………………………11分

故二面角的大小為 ………………………………………12分

解法2:(Ⅰ)如圖,取AB的中點(diǎn)E,則DE//BC,因?yàn)?sub>

1.jpg所以平面…………………1分

軸建立空間坐標(biāo)系,

 ……………………2分

從而平面   ……………3分

(Ⅱ)由,得 ………4分

設(shè)平面的法向量為

所以設(shè)……………………………7分

所以點(diǎn)到平面的距離………………………………8分

(Ⅲ)再設(shè)平面的法向量為

 所以 …………………………………9分

,根據(jù)法向量的方向, ………………………11分

可知二面角的大小為………………………………………12分

高三數(shù)學(xué)(理科)(模擬一)答案第3頁(yè)

21.解:(1)∵的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),∴恒成立,即

的圖象在處的切線(xiàn)方程為…2分

,且 …………………3分

解得 故所求的解析式為 ……6分

(2)解

,由且當(dāng)時(shí),  ………………………………………………………………………………8分

當(dāng)時(shí)遞增;在上遞減!9分

上的極大值和極小值分別為

故存在這樣的區(qū)間其中一個(gè)區(qū)間為…12分

22. 解:(1)由題意得設(shè)

① …………………………………2分

在雙曲線(xiàn)上,則

聯(lián)立①、②,解得:

由題意,∴點(diǎn)T的坐標(biāo)為(2,0). ………………………………4分

(2)設(shè)直線(xiàn)的交點(diǎn)M的坐標(biāo)為

、P、M三點(diǎn)共線(xiàn),得:  ①

、、三點(diǎn)共線(xiàn),得:

聯(lián)①、②立,解得: ……………………………………………6分

在雙曲線(xiàn)上,∴

∴軌跡E的方程為  ………………………………………8分

高三數(shù)學(xué)(理科)(模擬一)答案第4頁(yè)

(3)容易驗(yàn)證直線(xiàn)的斜率不為0.

故要設(shè)直線(xiàn)的方程為代入中得:

設(shè),則由根與系數(shù)的關(guān)系,

得:,①   ②  ………………………………10分

,∴有。將①式平方除以②式,得:

  ……………………………………………………………12分

  ∴

  …………………14分

 

 

 

 

 

高三數(shù)學(xué)(理科)(模擬一)答案第5頁(yè)

 

 

 

 


同步練習(xí)冊(cè)答案