設雙曲線的左.右頂點分別為.垂直于軸的直線與雙曲線 交于不同的兩點P.Q. 查看更多

 

題目列表(包括答案和解析)

設雙曲線的左、右頂點分別為A1,A2垂直于x軸的直線m與雙曲線C交于不同的兩點p,Q.
(1)若直線m與x軸正半軸的交點為T,且,求點T的坐標;
(2)求直線A1P與A2Q的交點M的軌跡E的方程.

查看答案和解析>>

已知雙曲線的左、右頂點分別為A、B,右焦點為F(,0),
一條漸近線的方程為,點P為雙曲線上不同于A、B的任意一點,過P作x軸的垂線交雙曲線于另一點Q.
(I)求雙曲線C的方程;
(Ⅱ)求直線AP與直線BQ的交點M的軌跡E的方程;
(Ⅲ)過點N(l,0)作直線l與(Ⅱ)中軌跡E交于不同兩點R、S,已知點T(2,0),設的取值范圍.

查看答案和解析>>

已知雙曲線的左、右頂點分別為A、B,右焦點為F(,0),
一條漸近線的方程為,點P為雙曲線上不同于A、B的任意一點,過P作x軸的垂線交雙曲線于另一點Q.
(I)求雙曲線C的方程;
(Ⅱ)求直線AP與直線BQ的交點M的軌跡E的方程;
(Ⅲ)過點N(l,0)作直線l與(Ⅱ)中軌跡E交于不同兩點R、S,已知點T(2,0),設的取值范圍.

查看答案和解析>>

一條雙曲線的左、右頂點分別為A1,A2,點M(x1,y1),N(x1,-y1)是雙曲線上不同的兩個動點.
(1)求直線A1M與A2N交點的軌跡E的方程式;
(2)設直線l與曲線E相交于不同的兩點A,B,已知點A的坐標為(-2,0),若點Q(0,y)在線段AB的垂直平分線上,且.求y的值.

查看答案和解析>>

設雙曲線C1的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設C1、C2的離心率分別為e1、e2,當e1
2
時,求e2的取值范圍.

查看答案和解析>>

一.選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

B

A

B

D

B

B

C

B

A

C

D

二.填空題

13. 4 ;          14.  ;      15. 2   ;     16.32 ;

三.解答題.

17.解:(1)  ……………………………2分

  ……………………………4分

  …………………………………………6分

(2)由余弦定理得:

(當且僅當時等號成立)………………9分

  …………………………………………………11分

的面積最大值為  …………………………………………………………12分

18.解:(Ⅰ)由

 …………………2分

   ……………………………………4分

(Ⅱ)由整理得

∴數(shù)列是以為首項,以2為公比的等比數(shù)列, …………………6分

∵當滿足  ………………………………………8分

(Ⅲ)

  ………………………………………………………………10分

∴當時,,當時,

高三數(shù)學(理科)(模擬一)答案第1頁

即當或2時,。當時,……2分

19.解:(Ⅰ)擲出點數(shù)x可能是:1,2,3,4.

分別得:。于是的所有取值分別為:0,1,4 .

因此的所有取值為:0,1,2,4,5,8.  …………………………………………2分

時,可取得最大值8,

此時,; ………………………………………………………4分

時且時,可取得最小值 0.

此時   …………………………………………………………6分

(Ⅱ)由(1)知的所有取值為:0,1,2,4,5,8.

 ……………………………………………………………7分

時,的所有取值為(2,3)、(4,3)、(3,2),(3,4)即;

時,的所有取值為(2,2)、(4,4)、(4,2),(2,4)即…8分

時,的所有取值為(1,3)、(3,1)即;

時,的所有取值為(1,2)、(2,1)、(1,4),(4,1)即 …9分

所以的分布列為:

0

1

2

4

5

8

…………10分

 

的期望 ………………12分

1.jpg20.解:(Ⅰ)因為平面,   

所以平面平面,………………1分

,所以平面,

,又 ………2分

所以平面; ………………………3分

(Ⅱ)因為,所以四邊形為菱形,

,

又D為AC中點,知 ……………4分

中點F,則平面,從而平面平面………………6分

,則,

高三數(shù)學(理科)(模擬一)答案第2頁

    在中,,故  ……………………………7分

到平面的距離為 …………………………………………8分

(Ⅲ)過,連,則

從而為二面角的平面角,  ……………………………………9分

,所以

中,………………………………………11分

故二面角的大小為 ………………………………………12分

解法2:(Ⅰ)如圖,取AB的中點E,則DE//BC,因為

1.jpg所以平面…………………1分

軸建立空間坐標系,

 ……………………2分

從而平面   ……………3分

(Ⅱ)由,得 ………4分

設平面的法向量為

所以……………………………7分

所以點到平面的距離………………………………8分

(Ⅲ)再設平面的法向量為

 所以 …………………………………9分

,根據(jù)法向量的方向, ………………………11分

可知二面角的大小為………………………………………12分

高三數(shù)學(理科)(模擬一)答案第3頁

21.解:(1)∵的圖象關于原點對稱,∴恒成立,即

的圖象在處的切線方程為…2分

,且 …………………3分

解得 故所求的解析式為 ……6分

(2)解

,由且當時,  ………………………………………………………………………………8分

遞增;在上遞減!9分

上的極大值和極小值分別為

故存在這樣的區(qū)間其中一個區(qū)間為…12分

22. 解:(1)由題意得

① …………………………………2分

在雙曲線上,則

聯(lián)立①、②,解得:

由題意,∴點T的坐標為(2,0). ………………………………4分

(2)設直線的交點M的坐標為

、P、M三點共線,得:  ①

、、三點共線,得:

聯(lián)①、②立,解得: ……………………………………………6分

在雙曲線上,∴

∴軌跡E的方程為  ………………………………………8分

高三數(shù)學(理科)(模擬一)答案第4頁

(3)容易驗證直線的斜率不為0.

故要設直線的方程為代入中得:

,則由根與系數(shù)的關系,

得:,①   ②  ………………………………10分

,∴有。將①式平方除以②式,得:

  ……………………………………………………………12分

  ∴

  …………………14分

 

 

 

 

 

高三數(shù)學(理科)(模擬一)答案第5頁

 

 

 

 


同步練習冊答案