(Ⅰ)求證:∥, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證:
(Ⅱ)化簡:

查看答案和解析>>

(Ⅰ)求證:;
(Ⅱ)利用第(Ⅰ)問的結果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n2-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)問的結果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx

(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

注意事項:

1.本試卷滿分150分,考試時間120分鐘.

2.答卷前,考生務必將自己的學校、班級、姓名等寫在三相應的位置.

3.本卷為答題卷,要求將所有試題答案或解答寫在答題卷指定位置上.

4.請用0.5毫米以下黑色的水筆作答.

考 生 填 寫 座 位

號 碼 的 末 兩 位

題 號

17

18

19

20

21

22

23

 

 

得 分

 

 

 

 

 

 

 

 

 

一.選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的;每小題選出答案后,請用2B鉛筆把就機讀卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號.)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

C

D

C

C

B

D

B

A

A

 

得分

評卷人

 

 

二.填空題(請把答案填在對應題號的橫線上)

13. .    14..

15..    16. .

 

 

三.解答題(本大題共5小題,共64分.解答應寫出文字說明、證明過程或演算步驟.請將答題的過程寫在答題卷中指定的位置.)

17.( 本題滿分12分)

解:(Ⅰ)∵,∴ (3分),又∵ 是鈍角,

       ∴ (或);...............6分

(Ⅱ)由余弦定理得,,..........9分

   ∴ .................12分,

 

 

18.(本題滿分12分)

解:(Ⅰ)設兩個紅球為,三個白球為,從中任意選取2個球,所有可能的結果如下:(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),(),()共有20種,………………………………………………………(5分)

其中紅球、白球都有的結果是(),(),(),(),(),(),(),(),(),(),(),()共有12種,

所以紅球、白球都有的概率為;…(8分)

(Ⅱ)∵“紅球個數(shù)不少于白球個數(shù)”包含兩類:兩紅,一紅一白,

∴由(Ⅰ)知中獎的概率為.……………………(12分)

 

19.(本題滿分12分)

證明:(Ⅰ)∵

,,

          ∴ ;........4分

  (Ⅱ)在三棱柱中,

    ∵ ,

∴ 四邊形,都是矩形,

又 ∵ ,,,

,又 ∵ 中點,

中,,同理,

     ∴ ,∴ ,.....8分

     在中,,

     在中,,

,∴ .....10分

,

∴ ...........12分

解法二:(Ⅱ)以為原點,建立如圖所示的空間直角坐標系,設,,(6分),則 ,,  ∴ ,

,∴(8分),

,

,∴(10分)

,∴ .....12分

 

20.(本題滿分14分)

解;(Ⅰ)設圓....①,將兩點坐標代入①得,

  ........................②(2分)

 又 ∵ 圓心在直線上,則 ...........③(3分)

   聯(lián)立②、③解之(4分),將代入中,得 ,

 故 圓的方程為 (5分).

(Ⅱ)∵直線的傾斜角互補,又點在圓上,且為圓上相異兩點,∴ 它們的傾斜角都不為,∴它們的斜率互為相反數(shù)(6分),

     設直線的方程為 ,則直線的方程為 (7分),

     聯(lián)立 ,.............(9分)

(或 (9分))

解之: ,(11分),

(或 解之,(11分))

同理可得,,(12分),

(或 (12分))

............14分

(或 ...........14分)

 

21.(本題滿分14分)

解:(Ⅰ)當=9時

......2分

解得:........3分

故函數(shù)在區(qū)間(-,-1)上是增函數(shù),

             在區(qū)間(3,+)上也是增函數(shù)...5分

(Ⅱ)

函數(shù)在(-,+)上為增函數(shù),∴對于0恒成立,

故:=36-120,解得:3.........8分

所以3時,函數(shù)在(-,+)上為增函數(shù).......9分

 (Ⅲ)在(Ⅱ)條件下函數(shù)在(-,+)上為增函數(shù),所以, 函數(shù)在區(qū)間上是增函數(shù),故有:

,∵,∴,從而方程x=至少有兩個不相等的實數(shù)根,即方程 至少有兩個不相等的實數(shù)根..............11分

又方程有一根為0,故:方程至少有一個不為0的根.

,解得:0............13分

    又∵3

   ∴ 3............14分

 

四.選考題(從下列兩道解答題中任選一道作答,作答時,請注明題號;若多做,則按首做題計入總分,滿分10分; 請將答題的過程寫在答題卷中指定的位置)

 

你選做_______題(請在橫線上注明題號)

 

解(或證明):

22. 證明:∵的切線,直線的割線

,(2分)

  又 ∵ ,∴,∴ (5分),

     ∵ ,

∴ △與△兩邊對應成比例,且夾角相等(7分),

∴ △∽△(8分)

(10分).

23. 解:(Ⅰ)直線的參數(shù)方程是,即 ..5分

(Ⅱ)設,則,

,(7分),

,即圓的極坐標方程為     

..........10分

 

 

 

 

 

 

 

 

 


同步練習冊答案