所求的概率為 ----------6分 查看更多

 

題目列表(包括答案和解析)

零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>

零件直徑相等的概率。本小題主要考查用列舉法計(jì)算隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力及運(yùn)用概率知識(shí)解決簡(jiǎn)單的實(shí)際問(wèn)題的能力。滿分12分

【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個(gè).設(shè)“從10個(gè)零件中,隨機(jī)抽取一個(gè)為一等品”為事件A,則P(A)==.

      (Ⅱ)(i)解:一等品零件的編號(hào)為.從這6個(gè)一等品零件中隨機(jī)抽取2個(gè),所有可能的結(jié)果有:,,,

,,,共有15種.

      (ii)解:“從一等品零件中,隨機(jī)抽取的2個(gè)零件直徑相等”(記為事件B)的所有可能結(jié)果有:,共有6種.

      所以P(B)=.

(本小題滿分12分)

如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

(Ⅰ)求異面直線CE與AF所成角的余弦值;      

(Ⅱ)證明CD⊥平面ABF;

(Ⅲ)求二面角B-EF-A的正切值。

查看答案和解析>>

甲、乙兩人各擲一次骰子,所得點(diǎn)數(shù)分別為x,y,求:
(1)x<y的概率;
(2)6<x+y<9的概率。

查看答案和解析>>

(08年大連市雙基測(cè)試?yán)恚?袋中有黑球和白球共6個(gè),從中任意取2個(gè)球,都是白球的概率為0.4. 現(xiàn)有甲、乙兩人從袋中輪流摸取一個(gè)球,甲先取乙后取,然后甲再取……取后不放回,直到兩人中有一人取到白球終止,每個(gè)球在每一次被取出的機(jī)會(huì)是等可能的,用ξ表示取球終止時(shí)所需要的取球次數(shù).

   (1)求袋中原有白球的個(gè)數(shù);

  (2)求隨機(jī)變量ξ的概率分布及期望,并求甲取到白球的概率.

查看答案和解析>>

(1)從4名男生和2名女生中任選3人參加演講比賽.求所選3人中至少有1名女生的概率.
(2)對(duì)某種產(chǎn)品的6件不同的正品和4件不同的次品,一一進(jìn)行測(cè)試,至區(qū)分出所有次品為止,若所有次品恰好在第5次測(cè)試時(shí)全部發(fā)現(xiàn),則這樣的測(cè)試方法有多少種?

查看答案和解析>>


同步練習(xí)冊(cè)答案