題目列表(包括答案和解析)
正方形ABCD的邊長為1,點E在邊AB上,點F在邊BC上,AE=BF=.動點P從E出發(fā)沿直線喜愛那個F運動,每當(dāng)碰到正方形的方向的邊時反彈,反彈時反射等于入射角,當(dāng)點P第一次碰到E時,P與正方形的邊碰撞的次數(shù)為
(A)16(B)14(C)12(D)10
【解析】結(jié)合已知中的點E,F的位置,進(jìn)行作圖,推理可知,在反射的過程中,直線是平行的,那么利用平行關(guān)系,作圖,可以得到回到EA點時,需要碰撞14次即可.
|
關(guān)于x1,x2,x3的齊次線性方程組的系數(shù)矩陣記為A,且該方程組存在非零解,若存在三階矩陣B≠O,使得AB=O,(O表示零矩陣,即所有元素均為0的矩陣;|B|表示行列式B的值,該行列式中元素與矩陣B完全相同)則
A.λ=-2,且|B|=0
B.λ=-2,且|B|≠0
C.λ=1,且|B|≠0
D.λ=1,且|B|=0
已知B、C是兩個定點,|BC|=6,且△ABC的周長等于16,求頂點A的軌跡方程.
探究:在解析幾何里,求適合某種條件的點的軌跡方程,要建立適當(dāng)?shù)淖鴺?biāo)系.
如圖,由△ABC的周長等于16,|BC|=6可知,點A到B、C兩點的距離之和是常數(shù),即|AB|+|AC|=16-6=10,因此,點A的軌跡是以B、C為焦點的橢圓.
已知圓M:定點,點P為圓M上的動點,點Q在NP上,點G在MP上,且滿足.
(Ⅰ)求點G的軌跡C的方程;
(Ⅱ)過點(2,0)作直線l,與曲線C交于A,B兩點,O是坐標(biāo)原點,設(shè),是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,試說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com