D. 當(dāng)時.是集合的最大值, 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)f(x)=ax2+bx+c.
(1)設(shè)f(x)在[-2,2]上的最大值、最小值分別是M、m,集合{x|f(x)=x}={1},且a≥1,記h(a)=M+m,求h(d)的最小值.
(2)當(dāng)a=2,c=-1時,
①設(shè)A=[-1,1],不等式f(x)≤0的解集為C,且C⊆A,求實數(shù)b的取值范圍;
②設(shè)g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c.
(1)設(shè)f(x)在[-2,2]上的最大值、最小值分別是M、m,集合{x|f(x)=x}={1},且a≥1,記h(a)=M+m,求h(d)的最小值.
(2)當(dāng)a=2,c=-1時,
①設(shè)A=[-1,1],不等式f(x)≤0的解集為C,且C⊆A,求實數(shù)b的取值范圍;
②設(shè)g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c.
(1)設(shè)f(x)在[-2,2]上的最大值、最小值分別是M、m,集合{x|f(x)=x}={1},且a≥1,記h(a)=M+m,求h(d)的最小值.
(2)當(dāng)a=2,c=-1時,
①設(shè)A=[-1,1],不等式f(x)≤0的解集為C,且C⊆A,求實數(shù)b的取值范圍;
②設(shè)g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c.
(1)設(shè)f(x)在[-2,2]上的最大值、最小值分別是M、m,集合{x|f(x)=x}={1},且a≥1,記h(a)=M+m,求h(d)的最小值.
(2)當(dāng)a=2,c=-1時,
①設(shè)A=[-1,1],不等式f(x)≤0的解集為C,且C⊆A,求實數(shù)b的取值范圍;
②設(shè)g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx+c.
(1)設(shè)f(x)在[-2,2]上的最大值、最小值分別是M、m,集合{x|f(x)=x}={1},且a≥1,記h(a)=M+m,求h(d)的最小值.
(2)當(dāng)a=2,c=-1時,
①設(shè)A=[-1,1],不等式f(x)≤0的解集為C,且C⊆A,求實數(shù)b的取值范圍;
②設(shè)g(x)=|x-t|-x2-bx(t∈R),求f(x)+g(x)的最小值.

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

A

D

A

B

D

B

C

B

C

D

B

1.提示:,故選C。

2.提示:“任意的”否定為“存在”;“>”的否定為“”,故選A

3.提示:,所以,故選D。

4.提示:在AB上取點D,使得,則點P只能在AD內(nèi)運動,則,

5.提示:排除法選B。

6.提示:由圖(1)改為圖(2)后每次循環(huán)時的值都為1,因此運行過程出現(xiàn)無限循環(huán),故選D

7.提示:由莖葉圖的定義,甲得分為7,8,9,15,19,23,24,26,32,41。共11個數(shù),19是中位數(shù),乙得分為5,7,11,11,13,20,22,30,31,40。共11個數(shù),13是中位數(shù)。

故選B。

8.提示:所以,故選C。

9.提示:由

如圖

過A作于M,則

 .

故選B.

10.提示:不妨設(shè)點(2,0)與曲線上不同的三的點距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以不能取到。故選B。

11.提示:使用特值法:取集合當(dāng)可以排除A、B;

取集合,當(dāng)可以排除C;故選D;

12.提示:n棱柱有個頂點,被平面截去一個三棱錐后,可以分以下6種情形(圖1~6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2在圖4,圖6所示的情形,還剩個頂點;

在圖5的情形,還剩個頂點;

在圖2,圖3的情形,還剩個頂點;

在圖1的情形,還剩下個頂點.故選B.

二、填空題:

13.4   

提示:

      由(1),(2)得,所以

14.   

提示:斜率 ,切點,所以切線方程為:

15.

提示:當(dāng)時,不等式無解,當(dāng)時,不等式變?yōu)?sub> ,

由題意得,所以,

16.

三、解答題:

17.解:① ∵的定義域為R;

② ∵,

 ∴為偶函數(shù);

③ ∵,  ∴是周期為的周期函數(shù);

④ 當(dāng)時,= ,

∴當(dāng)單調(diào)遞減;當(dāng)時,

=,

單調(diào)遞增;又∵是周期為的偶函數(shù),∴上單調(diào)遞增,在上單調(diào)遞減();

⑤ ∵當(dāng);

當(dāng).∴的值域為;

 ⑥由以上性質(zhì)可得:上的圖象如圖所示:

 

 

 

 

18.解:(Ⅰ)取PC的中點G,連結(jié)EG,GD,則

由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,

所以DG⊥PC,

所以DG⊥平面PBC.

因為DG//EF,所以EF⊥平面PBC。

(Ⅱ) 

 

 

 

19.解:(1)當(dāng) 時,,則函數(shù)上是增函數(shù),故無極值;

(2)。由及(1)只考慮的情況:

x

0

+

0

-

0

+

極大值

極小值

因此,函數(shù)在處取極小值,且

,所以;

(3)由(2)可知,函數(shù)內(nèi)都是增函數(shù),又函數(shù)內(nèi)是增函數(shù),則,由(2)要使得不等式關(guān)于參數(shù)恒成立,必有

綜上:解得所以的取值范圍是

20.解:

分組

頻數(shù)

頻率

50.5―60.5

4

0.08

60.5―70.5

8

0.16

70.5―80.5

10

0.20

80.5―90.5

16

0.32

90.5―100.5

12

0.24

合計

50

1.00

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)成績在75.5-85.5分的的學(xué)生占70.5-80.5分的學(xué)生的,因為成績在70.5-80.5分的學(xué)生頻率為0.2,所以成績在75.5-80.5分的學(xué)生頻率為0.1,成績在80.5-85.5分的的學(xué)生占80.5-90.5分的學(xué)生的,因為成績在80.5-90.5分的學(xué)生頻率為0.32,所以成績在80.5-85.5分的學(xué)生頻率為0.16,所以成績在75.5-85.5分的學(xué)生頻率為0.26,由于有900名學(xué)生參加了這次競賽,所以該校獲二等獎的學(xué)生約為0.26900=234人

21.解:(1)由已知,當(dāng)時,

,

當(dāng)時,,

兩式相減得:

當(dāng)時,適合上式,

(2)由(1)知

當(dāng)時,

兩式相減得:

,則數(shù)列是等差數(shù)列,首項為1,公差為1。

(3)

要使得恒成立,

恒成立,

恒成立。

當(dāng)為奇數(shù)時,即恒成立,又的最小值為1,

當(dāng)為偶數(shù)時,即恒成立,又的最大值為

為整數(shù),

,使得對任意,都有

22.解:(1)由題意知

解得,故,

所以函數(shù)在區(qū)間 上單調(diào)遞增。

(2)由

所以點G的坐標(biāo)為

函數(shù)在區(qū)間 上單調(diào)遞增。

所以當(dāng)時,取得最小值,此時點F、G的坐標(biāo)分別為

由題意設(shè)橢圓方程為,由于點G在橢圓上,得

解得

所以得所求的橢圓方程為。

(3)設(shè)C,D的坐標(biāo)分別為,則

,得

因為,點C、D在橢圓上,,,

消去。又,解得

所以實數(shù)的取值范圍是

 

 

 

 

 


同步練習(xí)冊答案