于是.故∠MON為銳角.所以原點O在圓C外. 查看更多

 

題目列表(包括答案和解析)

經(jīng)過(0,2)、(1,3-2)、(,-1)三點,且對稱軸平行于y軸的拋物線D與x軸相交于A、B(B在A點右側(cè))兩點,以該拋物線頂點C為圓心,以|CA|為半徑作圓C.

(1)求證:坐標(biāo)原點O在圓C外;

(2)過點O作直線l,使直線l與⊙C在第一象限相切,求直線l與直線AC所成的角.

查看答案和解析>>

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求向量乘積
PF1
PF2
的取值范圍;
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點M、N,且∠MON為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.求四邊形AEBF面積的最大值.

查看答案和解析>>

設(shè)F1、F2分別是橢圓
x2
4
+y2=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求向量乘積
PF1
PF2
的取值范圍;
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點M、N,且∠MON為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.求四邊形AEBF面積的最大值.

查看答案和解析>>

設(shè)F1、F2分別是橢圓+y2=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求向量乘積的取值范圍;
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點M、N,且∠MON為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.求四邊形AEBF面積的最大值.

查看答案和解析>>

設(shè)F1、F2分別是橢圓+y2=1的左、右焦點.
(1)若P是該橢圓上的一個動點,求向量乘積的取值范圍;
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點M、N,且∠MON為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.
(3)設(shè)A(2,0),B(0,1)是它的兩個頂點,直線y=kx(k>0)與AB相交于點D,與橢圓相交于E、F兩點.求四邊形AEBF面積的最大值.

查看答案和解析>>


同步練習(xí)冊答案