解:(1)由已知條件得: 查看更多

 

題目列表(包括答案和解析)

已知條件p:|x-1|>a(a≥0)和條件q:lg(x2-3x+3)>0,
(1)求滿足條件p,q的不等式的解集.
(2)分別利用所給的兩個條件作為A,B構造命題:“若A,則B”,問是否存在非負實數(shù)a使得構造的原命題為真命題,而其逆命題為假命題,若存在,求出a的取值范圍.若不存在,請說明理由.

查看答案和解析>>

已知條件p:|x-1|>a(a≥0)和條件q:lg(x2-3x+3)>0,
(1)求滿足條件p,q的不等式的解集.
(2)分別利用所給的兩個條件作為A,B構造命題:“若A,則B”,問是否存在非負實數(shù)a使得構造的原命題為真命題,而其逆命題為假命題,若存在,求出a的取值范圍.若不存在,請說明理由.

查看答案和解析>>

已知二次函數(shù)f(x)=ax2+bx,且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實數(shù)x稱為函數(shù)f(x)的“不動點”,若函數(shù)f(x)有且僅有一個不動點,
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+
k
x
+
1
2
x2在 (0,
6
3
]上是單調(diào)減函數(shù),求實數(shù)k的取值范圍;
(3)在(2)的條件下,是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域為[km,kn]?若存在,請求出區(qū)間[m,n];若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax2+bx+5,記f(x)的導數(shù)為f′(x).
(I)若曲線f(x)在點(1,f(1))處的切線斜率為3,且x=
2
3
時,y=f(x)有極值,求函數(shù)f(x)的解析式;
(II)在(I)的條件下,求函數(shù)f(x)在[-4,1]上的最大值和最小值;
(III)若關于x的方程f’(x)=0的兩個實數(shù)根為α、β,且1<α<β<2試問:是否存在正整數(shù)n0,使得|f′(n0)|≤
3
4
?說明理由.

查看答案和解析>>

已知函數(shù)f(x)=
axx2+b
在x=1處取得極值2.
(1)求函數(shù)f(x)的解析式;
(2)實數(shù)m滿足什么條件時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增?
(3)是否存在這樣的實數(shù)m,同時滿足:①m≤1;②當x∈(-∞,m]時,f(x)≥m恒成立.若存在,請求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案