從而得到.又由 查看更多

 

題目列表(包括答案和解析)

解:能否投中,那得看拋物線與籃圈所在直線是否有交點(diǎn)。因?yàn)楹瘮?shù)的零點(diǎn)是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。

某城市出租汽車的起步價(jià)為10元,行駛路程不超出4km,則按10元的標(biāo)準(zhǔn)收租車費(fèi)若行駛路程超出4km,則按每超出lkm加收2元計(jì)費(fèi)(超出不足1km的部分按lkm計(jì)).從這個(gè)城市的民航機(jī)場(chǎng)到某賓館的路程為15km.某司機(jī)常駕車在機(jī)場(chǎng)與此賓館之間接送旅客,由于行車路線的不同以及途中停車時(shí)間要轉(zhuǎn)換成行車路程(這個(gè)城市規(guī)定,每停車5分鐘按lkm路程計(jì)費(fèi)),這個(gè)司機(jī)一次接送旅客的行車路程ξ是一個(gè)隨機(jī)變量,

(1)他收旅客的租車費(fèi)η是否也是一個(gè)隨機(jī)變量?如果是,找出租車費(fèi)η與行車路程ξ的關(guān)系式;

(2)已知某旅客實(shí)付租車費(fèi)38元,而出租汽車實(shí)際行駛了15km,問(wèn)出租車在途中因故停車?yán)塾?jì)最多幾分鐘?這種情況下,停車?yán)塾?jì)時(shí)間是否也是一個(gè)隨機(jī)變量?

查看答案和解析>>

研究“剎車距離”對(duì)于安全行車及分析交通事故責(zé)任都有一定的作用,所謂“剎車距離”就是指行駛中的汽車,從剎車開始到停止,由于慣性的作用而又繼續(xù)向前滑行的一段距離.為了測(cè)定某種型號(hào)汽車的剎車性能(車速不超過(guò)140km/h),對(duì)這種汽車進(jìn)行測(cè)試,測(cè)得的數(shù)據(jù)如表:
剎車時(shí)的車速(km/h)0102030405060
剎車距離(m)00.31.02.13.65.57.8
(1)以車速為x軸,以剎車距離為y軸,在給定坐標(biāo)系中畫出這些數(shù)據(jù)的散點(diǎn)圖;
(2)觀察散點(diǎn)圖,估計(jì)函數(shù)的類型,并確定一個(gè)滿足這些數(shù)據(jù)的函數(shù)表達(dá)式;
(3)該型號(hào)汽車在國(guó)道上發(fā)生了一次交通事故,現(xiàn)場(chǎng)測(cè)得剎車距離為46.5m,請(qǐng)推測(cè)剎車時(shí)的速度為多少?請(qǐng)問(wèn)在事故發(fā)生時(shí),汽車是超速行駛還是正常行駛?

查看答案和解析>>

已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

【解析】第一問(wèn),因?yàn)橛深}設(shè)可知

 故

,又由題設(shè)    從而

第二問(wèn)中,

當(dāng)時(shí),,時(shí)

時(shí), 

時(shí),

分別討論得到結(jié)論。

由題設(shè)可知

 故

,又由題設(shè)   

從而……………………4分

(2)

當(dāng)時(shí),,時(shí)……………………6分

時(shí),……8分

時(shí),

 ……………………10分

綜上可得 

 

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問(wèn)中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;

(2)求數(shù)列的前n項(xiàng)和

(3)證明:不等式  對(duì)任意的,都成立.

【解析】第一問(wèn)中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問(wèn)中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問(wèn)中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時(shí),

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對(duì)任意的,都成立.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案