題目列表(包括答案和解析)
已知是等差數(shù)列,其前n項(xiàng)和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當(dāng)n=1時(shí),,,故等式成立.
② 假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:
即,因此n=k+1時(shí)等式也成立
由①和②,可知對(duì)任意,成立.
設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線與的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足
【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有 ①
由,得,
由,可得,代入①并整理得
由于,故.于是,所以橢圓的離心率
(2)證明:(方法一)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由條件得消去并整理得 ②
由,及,
得.
整理得.而,于是,代入②,
整理得
由,故,因此.
所以.
(方法二)
依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.
由P在橢圓上,有
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即 ③
由,,得整理得.
于是,代入③,
整理得
解得,
所以.
如圖,在三棱錐中,平面平面,,,,為中點(diǎn).(Ⅰ)求點(diǎn)B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問中利用因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為中點(diǎn),所以
而平面平面,所以平面,再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系得,,,,,,
故平面的法向量而,故點(diǎn)B到平面的距離
第二問中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912243024954937/SYS201207091224587495603078_ST.files/image012.png">,為中點(diǎn),所以
而平面平面,所以平面,
再由題設(shè)條件知道可以分別以、、為,, 軸建立直角坐標(biāo)系,得,,,,
,,故平面的法向量
而,故點(diǎn)B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
|
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com