(1)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)








⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線 有公共點(diǎn)時(shí),求△面積的最大值

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過(guò)點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說(shuō)明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過(guò)點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說(shuō)明理由.

查看答案和解析>>

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線能否垂直?若能,求之間滿足的關(guān)系式;若不能,說(shuō)明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求之間滿足的關(guān)系式.

查看答案和解析>>

設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線能否垂直?若能,之間滿足什么關(guān)系;若不能,說(shuō)明理由;
(2)已知的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.B   2. D  3.B   4.B   5.A   6.A   7.C   8. A.

二、填空題(本大題共6小題,每小題5分,共30分)

9.      10. 4       11.  (2分),(3分) 

12.      13.         14.       15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分10分)

解:(1)由向量共線有:

       即,            4分

       又,所以,

       則=,即          6分

      (2)由余弦定理得

,

       所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立        10分

       所以.          12分

 

17.(本小題滿分12分)

解:(1)由已知條件得

      2分

,則             6分

答:的值為

(2)解:可能的取值為0,1,2,3       5分

              6分

 

     7分

                 8分

   的分布列為:

 

 

 

 

0

1

2

3

 

 

 

 

 

        10分

 

所以                12分

答:數(shù)學(xué)期望為

 

18.(本小題滿分14分)

解:(1) 在△PAC中,∵PA=3,AC=4,PC=5,

        ∴,∴;……1分

       又AB=4,PB=5,∴在△PAB中,

       同理可得  …………………………2分

       ∵,∴……3分

      ∵平面ABC,∴PA⊥BC.   …………4分

(2)  如圖所示取PC的中點(diǎn)G,…………………5分

連結(jié)AG,BG,∵PF:FC=3:1,∴F為GC的中點(diǎn)

      又D、E分別為BC、AC的中點(diǎn),

∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F,……………7分 

      ∴面ABG∥面DEF.           

即PC上的中點(diǎn)G為所求的點(diǎn).                  …………… 9分

(3)由(2)知G這PC的中點(diǎn),連結(jié)GE,∴GE⊥平面ABC,過(guò)E作EH⊥AB于H,連結(jié)GH,則GH⊥AB,∴∠EHG為二面角G-AB-C的平面角.         …………… 11分

        又  

     又      …………… 13分

                         

∴二面角G-AB-C的平面角的正切值為.         …………… 14分

 

19.(本小題滿分14分)

(1)6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e   ……1分

∴當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e單調(diào)遞減

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,此時(shí)6ec8aac122bd4f6e單調(diào)遞增   ……3分 

6ec8aac122bd4f6e的極小值為6ec8aac122bd4f6e ……4分

(2)6ec8aac122bd4f6e6ec8aac122bd4f6e的極小值為1,即6ec8aac122bd4f6e6ec8aac122bd4f6e上的最小值為1,

6ec8aac122bd4f6e,6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e,6ec8aac122bd4f6e,  ……6分

當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增  ……7分

6ec8aac122bd4f6e

∴在(1)的條件下,6ec8aac122bd4f6e……9分

(3)假設(shè)存在實(shí)數(shù)6ec8aac122bd4f6e,使6ec8aac122bd4f6e6ec8aac122bd4f6e)有最小值3,6ec8aac122bd4f6e6ec8aac122bd4f6e …9分

① 當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,6ec8aac122bd4f6e,6ec8aac122bd4f6e(舍去),所以,此時(shí)6ec8aac122bd4f6e無(wú)最小值.  ……10分 

②當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,在6ec8aac122bd4f6e上單調(diào)遞增

6ec8aac122bd4f6e,6ec8aac122bd4f6e,滿足條件.  ……11分

③ 當(dāng)6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞減,6ec8aac122bd4f6e6ec8aac122bd4f6e(舍去),所以,此時(shí)6ec8aac122bd4f6e無(wú)最小值.綜上,存在實(shí)數(shù)6ec8aac122bd4f6e,使得當(dāng)6ec8aac122bd4f6e時(shí)6ec8aac122bd4f6e有最小值3.……14分

 

20.解(1)∵6ec8aac122bd4f6e過(guò)(0,0)

    則6ec8aac122bd4f6e

        又∵6ec8aac122bd4f6e

        將C點(diǎn)坐標(biāo)代入得  6ec8aac122bd4f6e

        解得  c2=8,b2=4

        ∴橢圓m:6ec8aac122bd4f6e  …………5分

        (2)由條件D(0,-2)  ∵M(jìn)(0,t)

        1°當(dāng)k=0時(shí),顯然-2<t<2  …………6分

        2°當(dāng)k≠0時(shí),設(shè)6ec8aac122bd4f6e

        6ec8aac122bd4f6e   消y得

        6ec8aac122bd4f6e   …………8分

        由△>0  可得  6ec8aac122bd4f6e   ①………………9分

        設(shè)6ec8aac122bd4f6e

        6ec8aac122bd4f6e     6ec8aac122bd4f6e   

        6ec8aac122bd4f6e   …………11分

        6ec8aac122bd4f6e 

        6ec8aac122bd4f6e   ②

        ∴t>1  將①代入②得   1<t<4

        ∴t的范圍是(1,4)………………13分

        綜上t∈(-2,4)  ………………14分

         

        21.(本小題滿分14分)

        解:(1)由點(diǎn)P在直線上,

        ,-----------------------------------------------2分

        ,數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列

           ,同樣滿足,所以---------------4分

          (2)

              ---------------------6分

             

             所以是單調(diào)遞增,故的最小值是----------------------8分

        (3),可得,-------10分

             ,

        ……

        ,n≥2------------------12分

        故存在關(guān)于n的整式g(x)=n,使得對(duì)于一切不小于2的自然數(shù)n恒成立.----14分


        同步練習(xí)冊(cè)答案