因此 為正整數(shù).方法二: 查看更多

 

題目列表(包括答案和解析)

(2013•懷化二模)如圖1,小正方形ABCD的面積為1,把它的各邊延長(zhǎng)一倍得到新正方形A1B1C1D1,再把正方形A1B1C1D1的各邊延長(zhǎng)一倍得到正方形A2B2C2D2(如圖2),如此進(jìn)行下去,正方形AnBnCnDn的面積為
5n
5n
.(用含有n的式子表示,n為正整數(shù))

查看答案和解析>>

精英家教網(wǎng)我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個(gè)數(shù)(i、j為正整數(shù)),使ai1=aii=i;每行中的其余各數(shù)分別等于其“肩膀”上的兩個(gè)數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(Ⅰ)試寫(xiě)出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推測(cè)bn+1和bn的關(guān)系(無(wú)需證明);
(Ⅱ)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式bn;
(Ⅲ)數(shù)列{bn}中是否存在不同的三項(xiàng)bp,bq,br(p、q、r為正整數(shù))恰好成等差數(shù)列?若存在,求出p、q、r的關(guān)系;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2008•長(zhǎng)寧區(qū)二模)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和sn滿(mǎn)足s1>1,且6sn=(an+1)(an+2)(n為正整數(shù)).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿(mǎn)足bn=
an,n為偶數(shù)
2an,n為奇數(shù)
,求Tn=b1+b2+…+bn;
(3)設(shè)Cn=
bn+1
bn
,(n為正整數(shù))
,問(wèn)是否存在正整數(shù)N,使得n>N時(shí)恒有Cn>2008成立?若存在,請(qǐng)求出所有N的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(2008•閔行區(qū)二模)若等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足
Sn
S2n
為常數(shù),則稱(chēng)該數(shù)列為S數(shù)列.
(1)判斷an=4n-2是否為S數(shù)列?并說(shuō)明理由;
(2)若首項(xiàng)為a1的等差數(shù)列{an}(an不為常數(shù))為S數(shù)列,試求出其通項(xiàng);
(3)若首項(xiàng)為a1的各項(xiàng)為正數(shù)的等差數(shù)列{an}為S數(shù)列,設(shè)n+h=2008(n、h為正整數(shù)),求
1
Sn
+
1
Sh
的最小值.

查看答案和解析>>

(2012•江蘇二模)已知各項(xiàng)均為正整數(shù)的數(shù)列{an}滿(mǎn)足an<an+1,且存在正整數(shù)k(k>1),使得a1+a2+…+ak=a1•a2…ak,an+k=k+an(n∈N*).
(1)當(dāng)k=3,a1a2a3=6時(shí),求數(shù)列{an}的前36項(xiàng)的和S36;
(2)求數(shù)列{an}的通項(xiàng)an;
(3)若數(shù)列{bn}滿(mǎn)足bnbn+1=-21•(
12
)an-8
,且b1=192,其前n項(xiàng)積為T(mén)n,試問(wèn)n為何值時(shí),Tn取得最大值?

查看答案和解析>>


同步練習(xí)冊(cè)答案