由此得: 查看更多

 

題目列表(包括答案和解析)

由原點O向三次曲線y=x3-3ax2(a≠0)引切線,切點為P1(x1,y1)(O,P1兩點不重合),再由P1引此曲線的切線,切于點P2(x2,y2)(P1,P2不重合),如此繼續(xù)下去,得到點列:{Pn(xn,yn)}
(1)求x1;
(2)求xn與xn+1滿足的關系式;
(3)若a>0,試判斷xn與a的大小關系,并說明理由

查看答案和解析>>

由原點O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于點O的點P1(x1,y1),再由P1引此曲線的切線,切于不同于P1的點P2(x2,y2),如此繼續(xù)地作下去,…,得到點列{Pn(xn,yn)},試回答下列問題:
(1)求x1;
(2)求xn與xn+1的關系;
(3)若a>0,求證:當n為正偶數(shù)時,xn<a;當n為正奇數(shù)時,xn>a.

查看答案和解析>>

由坐標原點O向曲線y=x3-3ax2+bx(a≠0)引切線,切于O以外的點P1(x1,y1),再由P1引此曲線的切線,切于P1以外的點P2(x2,y2),如此進行下去,得到點列{ Pn(xn,yn}}.
求:(Ⅰ)xn與xn-1(n≥2)的關系式;
(Ⅱ)數(shù)列{xn}的通項公式.

查看答案和解析>>

由原點向三次曲線引切線,切于不同于點的點

,再由引此曲線的切線,切于不同于的點,如此繼續(xù)地作下去,……,得到點列,試回答下列問題: ⑴求; (2)求的關系式;

(3)若,求證:當為正偶數(shù)時, ;當為正奇數(shù)時, .

查看答案和解析>>

由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從某中學隨機抽取16名學生,經校醫(yī)用對數(shù)視力表檢査得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:

(I )若視力測試結果不低于5 0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;

(II)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“好視力”學生的人數(shù),求的分布列及數(shù)學期望,據(jù)此估計該校高中學生(共有5600人)好視力的人數(shù)

 

查看答案和解析>>


同步練習冊答案