題目列表(包括答案和解析)
設函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學?。網]
(Ⅰ)求a、b的值;
(Ⅱ)設x>0,試比較f(x)與g(x)的大小.[來源:學,科,網Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導數(shù)為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
解:因為f(x)=lnx,g(x)=ax+
則其導數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當時,,有;當時,,有;當x=1時,,有
(本題滿分8分)如圖,在直三棱柱中,分別是的中點,點在上,
求證:(Ⅰ)∥平面
(Ⅱ)平面平面
(本小題滿分8分)在直三棱柱中,,,分別為棱、的中點,為棱上的點。
(1)證明:;
(2) 當時,求二面角的大小。
(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)
一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標依次是,(如圖所示,坐標以已知條件為準),表示青蛙從點到點所經過的路程。
(1) 若點為拋物線準線上
一點,點,均在該拋物線上,并且直線經
過該拋物線的焦點,證明.
(2)若點要么落在所表示的曲線上,
要么落在所表示的曲線上,并且,
試寫出(不需證明);
(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達式.
在棱長為的正方體中,是線段的中點,.
(1) 求證:^;
(2) 求證://平面;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定為平行四邊形,然后,可知結論成立。
第三問中,是邊長為的正三角形,其面積為,
因為平面,所以,
所以是直角三角形,其面積為,
同理的面積為, 面積為. 所以三棱錐的表面積為.
解: (1)證明:根據正方體的性質,
因為,
所以,又,所以,,
所以^. ………………4分
(2)證明:連接,因為,
所以為平行四邊形,因此,
由于是線段的中點,所以, …………6分
因為面,平面,所以∥平面. ……………8分
(3)是邊長為的正三角形,其面積為,
因為平面,所以,
所以是直角三角形,其面積為,
同理的面積為, ……………………10分
面積為. 所以三棱錐的表面積為
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com