題目列表(包括答案和解析)
評估得分 | [50,60) | [60,70) | [70,80) | [80,90) |
評定類型 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
貸款金額(萬元) | 0 | 200 | 400 | 800 |
評估得分 | [50,60) | [60,70) | [70,80) | [80,90) |
評定類型 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
貸款金額(萬元) | 0 | 200 | 400 | 800 |
評估得分 | [50,60) | [60,70) | [70,80) | [80,90) |
評定類型 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
貸款金額(萬元) | 200 | 400 | 800 |
某系統(tǒng)采用低息貸款的方式對所屬企業(yè)給予扶持,該系統(tǒng)制定了評分標準,并根據(jù)標準對企業(yè)進行評估,然后依據(jù)評估得分將這些企業(yè)分別定為優(yōu)秀、良好、合格、不合格四個等級,并根據(jù)等級分配相應(yīng)的低息貸款數(shù)額。為了更好地掌握貸款總額,該系統(tǒng)隨機抽查了所屬的部分企業(yè),以下圖表給出了有關(guān)數(shù)據(jù)(將頻率看作概率)
評估得分 |
|
|
|
|
評定類型 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
貸款金額(萬元) | 0 | 200 | 400 | 800 |
(1)任抽一家所屬企業(yè),求抽到的企業(yè)等級是優(yōu)秀或良好的概率;
(2)對照標準,企業(yè)進行了整改,整改后,如果優(yōu)秀企業(yè)數(shù)量不變,不合格企業(yè)、合格企業(yè)、
良好企業(yè)的數(shù)量成等差數(shù)列。要使所屬企業(yè)獲得貸款的平均值(即數(shù)學(xué)期望)不低于萬元,
那么整改后不合格企業(yè)占企業(yè)總數(shù)百分比的最大值是多少?
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 440 | 200 |
女生 | 200 | 160 | 200 |
一:填空題
1、2; 2、x∈R,使x2+1<x; 3、π; 4、; 5、既不充分也不必要條件;
6、1+i; 7、; 8、5; 9、; 10、(-∞, -)∪(,+∞);
11、2或5; 12、9; 13、b1?b22?b33?…?bnn=; 14、;
二:解答題
15.解:(1)∵(a=(cosα,sinα) (b=(cosβ,sinβ)
∴(a?(b=cos(α-β) =cos= …………………………………………5分
(2)∵∴………7分
α+β=2α-(α-β)= -(α-β) ……………………………………9分
∴或或7……………14分
16、證明:(1)令BC中點為N,BD中點為M,連結(jié)MN、EN
∵MN是△ABC的中位線
∴ MN∥CD …………………………2分
由條件知AE∥CD ∴MN∥AE 又MN=CD=AE
∴四邊形AEMN為平行四邊形
∴AN∥EM …………………………4分
∵AN面BED, EM面BED
∴AN∥面BED……………………6分
(2) ∵AE⊥面ABC, AN面ABC
∴AE⊥AN 又∵AE∥CD,AN∥EM∴EM⊥CD………………8分
∵N為BC中點,AB=AC∴AN⊥BC
∴EM⊥BC………………………………………………10分
∴EM⊥面BCD…………………………………………12分
∵EM面BED ∴ 面BED⊥面BCD ……14分
17.解:(1)取弦的中點為M,連結(jié)OM
由平面幾何知識,OM=1
…………………………………………3分
解得:, ………………………………………5分
∵直線過F、B ,∴則 …………………………………………7分
(2)設(shè)弦的中點為M,連結(jié)OM
則
……………………………………10分
解得 …………………………………………12分
∴……………………………15分
18.(1)延長BD、CE交于A,則AD=,AE=2
則S△ADE= S△BDE= S△BCE=, ∵S△APQ=,
∴ ∴…………………7分
(2)
=?………………12分
當,即……15分
19.解(1)證: 由 得
在C1上點處的切線為y-2e=2(x-e),即y=2x
又在C2上點處切線可計算得y-2e=2(x-e),即y=2x
∴直線l與C1、C2都相切,且切于同一點(e,2e) …………………5分
(2)據(jù)題意:M(t, +e),N(t,2elnt),P(t,2t)
∵+e-2t=≥0,∴+e ≥2t
設(shè)h(t)= 2t-2elnt,則由h/(t)=2-=0得t=e ;
當t∈(0,e)時h/(t)<0,h(t)單調(diào)遞減;且當t∈(e,+∞)時h/(t)>0,h(t)單調(diào)遞增;
∴t>0有h(t)≥h(e)=0 ∴2t≥2elnt
∴f(t)=+e-2t-(2t-2elnt)= +e -4t+2elnt………………4分
f(t)= +2e-4==≥0…………………7分
∴在上遞增∴當時………10分
(3)
設(shè)上式為 ,假設(shè)取正實數(shù),則?
當時,,遞減;
當,,遞增. ……………………………………12分
∵
∴不存在正整數(shù),使得即 …………………16分
20.解:(1),
,對一切恒成立
的最小值,又 ,………………4分
(2)這5個數(shù)中成等比且公比的三數(shù)只能為
只能是,
…………………………8分
,,
,顯然成立 ……………………………………12分
當時,,
∴ ∴使成立的自然數(shù)n恰有4個正整數(shù)的p值為3……16分
三:理科附加題
21. A.解:(1)
∴ ∴AB=CD …………………………4分
(2)由相交弦定理得2×1=(3+OP)(3-OP)
∴,∴ ……………………………………10分
B.解:依題設(shè)有: ………………………………………4分
令,則 …………………………………………5分
…………………………………………7分
………………………………10分
C.解:以有點為原點,極軸為軸正半軸,建立平面直角坐標系,兩坐標系中取相同的長度單位.(1),,由得.
所以.
即為圓的直角坐標方程. ……………………………………3分
同理為圓的直角坐標方程. ……………………………………6分
(2)由
相減得過交點的直線的直角坐標方程為. …………………………10分
D.證明:(1)因為
所以 …………………………………………4分
(2)∵ …………………………………………6分
同理,,……………………………………8分
三式相加即得……………………………10分
22.解:(1)記“恰好選到1個曾參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)”為事件的,
則其概率為 …………………………………………4分
答:恰好選到1個曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動的同學(xué)的概率為
(2)隨機變量
P(ξ=2)= =; P(ξ=3)= =;………7分
2
3
4
P
∴隨機變量的分布列為
………………10分
23.(1),,,
,,………………3分
(2)平面BDD1的一個法向量為,設(shè)平面BFC1的法向量為
∴
取得平面BFC1的一個法向量
∴所求的余弦值為 ……………………………………6分
(3)設(shè)()
,由得
即,
,當時,當時,∴ ……………10分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com