21.[選做題]在A.B.C.D四小題中只能選做2小題.每題10分.共20分, A.選修4―1 幾何證明選講 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:
(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點(diǎn)P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
A選修4-1:幾何證明選講
如圖,延長(zhǎng)⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點(diǎn),過點(diǎn)B作DE的垂線,垂足為點(diǎn)C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實(shí)數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,求線段AE的長(zhǎng).
B.(選修4-2:矩陣與變換)
已知二階矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=
1
1
,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=
1
-1
,求矩陣A的逆矩陣A-1
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
以平面直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系(兩種坐標(biāo)系中取相同的單位長(zhǎng)度),已知點(diǎn)A的直角坐標(biāo)為(-2,6),點(diǎn)B的極坐標(biāo)為(4,
π
2
)
,直線l過點(diǎn)A且傾斜角為
π
4
,圓C以點(diǎn)B為圓心,4為半徑,試求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
D.(選修4-5:不等式選講)
設(shè)a,b,c,d都是正數(shù),且x=
a2+b2
,y=
c2+d2
.求證:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

[選做題]在A、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫在答題紙的指定區(qū)域內(nèi).
A.(選修4-1:幾何證明選講)
過圓O外一點(diǎn)P分別作圓的切線和割線交圓于A,B,且PB=7,∠ABP=∠ABC,C是圓上一點(diǎn)使得BC=5,求線段AB的長(zhǎng).
B.(選修4-2:矩陣與變換)
求曲線C:xy=1在矩陣
2
2
-
2
2
2
2
2
2
對(duì)應(yīng)的變換作用下得到的曲線C′的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
已知曲線C1
x=3cosθ
y=2sinθ
(θ為參數(shù))和曲線C2:ρsin(θ-
π
4
)=
2

(1)將兩曲線方程分別化成普通方程;
(2)求兩曲線的交點(diǎn)坐標(biāo).
D.(選修4-5:不等式選講)
已知|x-a|<
c
4
,|y-b|<
c
6
,求證:|2x-3y-2a+3b|<c.

查看答案和解析>>

一:填空題

1、2;  2、x∈R,使x2+1<x;  3、π;  4、;  5、既不充分也不必要條件;

6、1+i;   7、;     8、5;     9、;    10、(-∞, -)∪(,+∞);

11、2或5;    12、9;  13、b1?b22?b33?…?bnn=;    14、;

二:解答題

15.解:(1)∵(a=(cosα,sinα) (b=(cosβ,sinβ)

∴(a?(b=cos(α-β) =cos=         …………………………………………5分

(2)∵………7分

α+β=2α-(α-β)= -(α-β)         ……………………………………9分

或7……………14分

16、證明:(1)令BC中點(diǎn)為N,BD中點(diǎn)為M,連結(jié)MN、EN

∵M(jìn)N是△ABC的中位線

∴   MN∥CD       …………………………2分

由條件知AE∥CD ∴MN∥AE 又MN=CD=AE 

∴四邊形AEMN為平行四邊形

∴AN∥EM …………………………4分

∵AN面BED, EM面BED

∴AN∥面BED……………………6分

(2)   ∵AE⊥面ABC, AN面ABC

∴AE⊥AN  又∵AE∥CD,AN∥EM∴EM⊥CD………………8分

∵N為BC中點(diǎn),AB=AC∴AN⊥BC

*∴EM⊥BC………………………………………………10分

∴EM⊥面BCD…………………………………………12分

∵EM面BED  ∴  面BED⊥面BCD  ……14分

17.解:(1)取弦的中點(diǎn)為M,連結(jié)OM

由平面幾何知識(shí),OM=1

                   …………………………………………3分

解得:,               ………………………………………5分

∵直線過F、B ,∴     …………………………………………7分

(2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

              ……………………………………10分

解得                       …………………………………………12分

……………………………15分

                  

18.(1)延長(zhǎng)BD、CE交于A,則AD=,AE=2

     則S△ADE= S△BDE= S△BCE=,  ∵S△APQ=

    ∴…………………7分

(2)

          =?………………12分

    當(dāng),即……15分

19.解(1)證:       由  得

在C1上點(diǎn)處的切線為y-2e=2(x-e),即y=2x

又在C2上點(diǎn)處切線可計(jì)算得y-2e=2(x-e),即y=2x

∴直線l與C1、C2都相切,且切于同一點(diǎn)(e,2e)      …………………5分

(2)據(jù)題意:M(t, +e),N(t,2elnt),P(t,2t)

∵+e-2t=≥0,∴+e ≥2t

設(shè)h(t)= 2t-2elnt,則由h/(t)=2-=0得t=e ;

當(dāng)t∈(0,e)時(shí)h/(t)<0,h(t)單調(diào)遞減;且當(dāng)t∈(e,+∞)時(shí)h/(t)>0,h(t)單調(diào)遞增;

∴t>0有h(t)≥h(e)=0  ∴2t≥2elnt

∴f(t)=+e-2t-(2t-2elnt)= +e -4t+2elnt………………4分

f(t)= +2e-4==≥0…………………7分

   ∴上遞增∴當(dāng)時(shí)………10分

(3)

設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

當(dāng)時(shí),,遞減;

當(dāng),,遞增. ……………………………………12分

                 

    

∴不存在正整數(shù),使得              …………………16分

20.解:(1)

,對(duì)一切恒成立

的最小值,又 ,………………4分

(2)這5個(gè)數(shù)中成等比且公比的三數(shù)只能為

只能是,

      …………………………8分

,,

顯然成立             ……………………………………12分

當(dāng)時(shí),

∴使成立的自然數(shù)n恰有4個(gè)正整數(shù)的p值為3……16分

三:理科附加題

21. A.解:(1)

   ∴AB=CD                          …………………………4分

(2)由相交弦定理得2×1=(3+OP)(3-OP)

,∴               ……………………………………10分

B.解:依題設(shè)有:     ………………………………………4分

 令,則           …………………………………………5分

           …………………………………………7分

  ………………………………10分

C.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位.(1),由

所以

為圓的直角坐標(biāo)方程.  ……………………………………3分

同理為圓的直角坐標(biāo)方程. ……………………………………6分

(2)由      

相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

D.證明:(1)因?yàn)?sub>

    所以          …………………………………………4分

    (2)∵   …………………………………………6分

    同理,……………………………………8分

    三式相加即得……………………………10分

22.解:(1)記“恰好選到1個(gè)曾參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的,

則其概率為                …………………………………………4分

    答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

(2)隨機(jī)變量

P(ξ=2)= =; P(ξ=3)= =;………7分

2

3

4

P

  ∴隨機(jī)變量的分布列為

                    ………………10分

23.(1),,

,………………3分

   (2)平面BDD1的一個(gè)法向量為,設(shè)平面BFC1的法向量為

得平面BFC1的一個(gè)法向量

∴所求的余弦值為                     ……………………………………6分

(3)設(shè)

,由

,

,當(dāng)時(shí),當(dāng)時(shí),∴   ……………10分

 

 

 

 


同步練習(xí)冊(cè)答案