題目列表(包括答案和解析)
已知
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間。
(2)當(dāng)時,討論函數(shù)的單調(diào)增區(qū)間。
(3)是否存在負(fù)實數(shù),使,函數(shù)有最小值-3?
已知函數(shù).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 若在上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
【解析】本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運用。利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性和求解函數(shù)的極值,以及運用逆向思維,求解參數(shù)取值范圍的問題。
已知函數(shù).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;
(2) 若在上是單調(diào)函數(shù),求實數(shù)a的取值范圍.
【解析】本試題考查了導(dǎo)數(shù)在研究函數(shù)中的運用。利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性和求解函數(shù)的極值,以及運用逆向思維,求解參數(shù)取值范圍的問題。
已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對定義域內(nèi)任意x,均有恒成立,求實數(shù)a的取值范圍?
(Ⅲ)證明:對任意的正整數(shù),恒成立。
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.B 3.D 4.A 5.C 6.B 7.D 8.C
二、填空題(本大題共6小題,每小題5分,共30分)
9. () 10.12000 11.4 12.144 13.
14. 15.
三、解答題(本大題共6小題,共80分)
16.(本小題滿分12分)
解:(Ⅰ)…………………………………2分
……………………………………………………3分
………………………………………………………5分
∴函數(shù)的最小正周期…………………………………………6分
(Ⅱ)當(dāng)時,………………………………………8分
∴當(dāng)即時,函數(shù)單調(diào)遞增……………………10分
當(dāng)即時,函數(shù)單調(diào)遞減……………………12分
17.(本小題滿分12分)
解:∵作品數(shù)量共有50件,∴…………①……………………2分
(Ⅰ)從表中可以看出,“藝術(shù)與創(chuàng)新為4分且功能與實用為3分”的作品數(shù)量為6件,
∴“藝術(shù)與創(chuàng)新為4分且功能與實用為3分”的概率為……………4分
(Ⅱ)由表可知“功能與實用”得分有1分、2分、3分、4分、5分五個等級,且每個等級分別有5件,件,15件,15件,年。
∴“功能與實用”得分的分布列為:
1
2
3
4
5
…………………………………8分
又∵“功能與實用”得分的數(shù)學(xué)期望為,
∴
與①式聯(lián)立可解得:,……………………12分
18.(本小題滿分14分)
解:(Ⅰ)在中,,,∴,……1分
在中,,,∴,…………2分
∴…………4分
則…………………………………………5分
(Ⅱ)∵平面,∴…………………………6分
又,,
∴平面………………………7分
∵、分別為、中點,
∴………………………8分
∴平面………………………9分
∵平面,∴平面平面
………………………10分
(Ⅲ)取的中點,連結(jié),則,
∴平面,過作于,
連接,則為二面角的平面角。
…………………………12分
∵為的中點,,,
∴,又,
∴,故
即三面角的大小為…………………………14分
19.(本小題滿分14分)
解:由函數(shù)得,………………3分
(Ⅰ) 若為區(qū)間上的“凸函數(shù)”,則有在區(qū)間上恒成立,由二次函數(shù)的圖像,當(dāng)且僅當(dāng)
,
即. …………………………………………………7分
(Ⅱ)當(dāng)時,恒成立當(dāng)時,恒成立.……………………………………………………………………………8分
當(dāng)時,顯然成立。 …………………………………9分
當(dāng),
∵的最小值是.
∴.
從而解得 …………………………………………………………………11分
當(dāng),
∵的最大值是,∴,
從而解得. ………………………………………………………………13分
綜上可得,從而 ………………………………14分
20.(本小題滿分14分)
解:(Ⅰ)∵拋物線的焦點為(),………………………1分
∴………………………………………………………………………2分
∴,所求方程為………………………………………4分
(Ⅱ)設(shè)動圓圓心為,(其中),、的坐標(biāo)分別為,
因為圓過,故設(shè)圓的方程……………6分
∵、是圓和軸的交點
∴令得:…………………………………………………8分
則,
…………………10分
又∵圓心在拋物線上
∴ …………………………………………………………………11分
∴………………………………….12分
∴當(dāng)時,(定值). ……………………………………………14分
21.(本小題滿分14分)
解:(Ⅰ)若為等比數(shù)列,則存在,使
對成立!2分
由已知:,代入上式,整理得
………①……………4分
∵①式對成立,
∴解得……………………………………5分
∴當(dāng),時,數(shù)列是公比為2的等比數(shù)列…………6分
(Ⅱ)證明:由(Ⅰ)得:,即
所以……………………………8分
∵…………………………9分
時,
…………………………11分
現(xiàn)證:()
證法1:
當(dāng)時,,
而,,故時成立。…………………………12分
時,由
且得,,∴…………………14分
證法2:
時
個
∴……………………………………14分
證法3:
(1)時,
,故時不等式成立……………………12分
(2)假設(shè)()
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com