在同一平面內(nèi).Rt△ABC和Rt△ACD拼接如圖所示.現(xiàn)將△ACD繞A點(diǎn)順時(shí)針旋轉(zhuǎn)α角(0<α<)后得△AC1D1.AD1交DC于點(diǎn)E.AC1交BC于點(diǎn)F.∠BAC=∠ACD=.∠ACB=∠ADC=.AC=.(1)當(dāng)AF=1時(shí).求α, 查看更多

 

題目列表(包括答案和解析)

已知關(guān)于的方程有實(shí)根,復(fù)數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離為

A.2                B.4             C.            D. 8

查看答案和解析>>

如圖所示,豎直平面內(nèi)的3/4圓弧形光滑軌道半徑為R,A端與圓心O等高,AD為與水平方向成45°角的斜面,B端在O的正上方,一個(gè)可看成質(zhì)點(diǎn)的小球在A點(diǎn)正上方由靜止開(kāi)始釋放,自由下落至A點(diǎn)后進(jìn)入圓形軌道并恰能到達(dá)B點(diǎn)。求:

(1)到達(dá)B點(diǎn)的速度大。

(2)釋放點(diǎn)距A點(diǎn)的豎直高度;

(3)小球落到斜面上C點(diǎn)時(shí)的速度大小。

查看答案和解析>>

如圖所示,豎直平面內(nèi)的3/4圓弧形光滑軌道半徑為R,A端與圓心O等高,AD為與水平方向成45°角的斜面,B端在O的正上方,一個(gè)可看成質(zhì)點(diǎn)的小球在A點(diǎn)正上方由靜止開(kāi)始釋放,自由下落至A點(diǎn)后進(jìn)入圓形軌道并恰能到達(dá)B點(diǎn)。求:

(1)到達(dá)B點(diǎn)的速度大。

(2)釋放點(diǎn)距A點(diǎn)的豎直高度;

(3)小球落到斜面上C點(diǎn)時(shí)的速度大小。

查看答案和解析>>

(一)根據(jù)下列句子所給漢語(yǔ)意思寫(xiě)出空缺處單詞,或根據(jù)所給詞寫(xiě)出正確形式。
【小題1】If you want to go to the party with me, you should        (表現(xiàn)好) well.   
【小題2】There were several new          (arrive) at the hotel last night.       
【小題3】It's illegal to read people's private letters without        (允許). 
【小題4】You are only         (稍微) underweight for your height.
【小題5】The Prime Minister has formed a new       (內(nèi)閣).
(二)根據(jù)下列句子所給漢語(yǔ)意思完成句子。
【小題6】It’s going to rain. Xiao Feng, will you please help me                (收衣服) on the line?
【小題7】                 (已經(jīng)確認(rèn))that the 31st Olympic Games will be held in Brazil.
【小題8】Is it __________(在步行距離內(nèi))or do I need to take a bus?
【小題9】Firstly, we should                  life. (養(yǎng)成對(duì)…的好態(tài)度)
【小題10】In recent years, many of my friends have come to big cities to               .(追求幸福與成功)

查看答案和解析>>

閱讀下面短文,根據(jù)以下提示:1)漢語(yǔ)提示,2)首字母提示,3)語(yǔ)境提示,在每個(gè)空格內(nèi)填入一個(gè)適當(dāng)?shù)挠⒄Z(yǔ)單詞,并將該詞完整地寫(xiě)在右邊相對(duì)應(yīng)的橫線上。所填單詞要求意義準(zhǔn)確,拼寫(xiě)正確。

     People often don’t do what they really want to for fear

of failure. You don’t apply for a job ______ case you don’t

get it. You don’t perform at the school concert b       others

might laugh at you. A lack of confidence can l       to a lot

of suffering. The key to o       this problem is to believe in

yourself. This might be        (容易)said than done, but there

are many w       to help you do this. Talk about your problem

with a friend or look        advice on the Internet. Imagine

yourself being        (成功) and practise breathing techniques

to keep you calm when you get nervous. And the        important

thing is: believe you can do it. When you’ve ______(學(xué)會(huì))to do

that, you are well on your way.

 

查看答案和解析>>

1.C   2.A   3.B   4.D   5.C   6.B   7.D   8.C   9.B  10.A

  11.120°   12.3x+y-1=0   13.   14.10    15.100    16.(1),(4)

17.解:(1)設(shè)拋物線,將(2,2)代入,得p=1. …………4分

∴y2=2x為所求的拋物線的方程.………………………………………………………5分

(2)聯(lián)立 消去y,得到. ………………………………7分

設(shè)AB的中點(diǎn)為,則

∴ 點(diǎn)到準(zhǔn)線l的距離.…………………………………9分

,…………………………11分

,故以AB為直徑的圓與準(zhǔn)線l相切.…………………… 12分

(注:本題第(2)也可用拋物線的定義法證明)

18.解:(1)在△ACF中,,即.………………………………5分

.又,∴.…………………… 7分

(2)

. ……………………………14分

(注:用坐標(biāo)法證明,同樣給分)

19.

解法一:(1)連OM,作OH⊥SM于H.

∵SM為斜高,∴M為BC的中點(diǎn),∴BC⊥OM.

∵BC⊥SM,∴BC⊥平面SMO.

又OH⊥SM,∴OH⊥平面SBC.……… 2分

由題意,得

設(shè)SM=x,

,解之,即.………………… 5分

(2)設(shè)面EBC∩SD=F,取AD中點(diǎn)N,連SN,設(shè)SN∩EF=Q.

∵AD∥BC,∴AD∥面BEFC.而面SAD∩面BEFC=EF,∴AD∥EF.

又AD⊥SN,AD⊥NM,AD⊥面SMN.

從而EF⊥面SMN,∴EF⊥QS,且EF⊥QM.

∴∠SQM為所求二面角的平面角,記為α.……… 7分

由平幾知識(shí),得

,∴

,即所求二面角為. ……………… 10分

(3)存在一點(diǎn)P,使得OP⊥平面EBC.取SD的中點(diǎn)F,連FC,可得梯形EFCB,

取AD的中點(diǎn)G,連SG,GM,得等腰三角形SGM,O為GM的中點(diǎn),

設(shè)SG∩EF=H,則H是EF的中點(diǎn).

連HM,則HM為平面EFCB與平面SGM的交線.

又∵BC⊥SO,BC⊥GM,∴平面EFCB⊥平面SGM. …………… 12分

在平面SGM中,過(guò)O作OQ⊥HM,由兩平面垂直的性質(zhì),可知OQ⊥平面EFCB.

而OQ平面SOM,在平面SOM中,延長(zhǎng)OQ必與SM相交于一點(diǎn),

故存在一點(diǎn)P,使得OP⊥平面EBC. ……………………… 14分

 

∵底面邊長(zhǎng)為1,∴,

,,

.    ……………… 1分

設(shè),

平面SBC的一個(gè)法向量,

,

∴y=2h,n=(0,2h,1).… 3分

=(0,1,0),由題意,得.解得

∴斜高. …………………………………………………… 5分

(2)n=(0,2h,1)=,

由對(duì)稱(chēng)性,面SAD的一個(gè)法向量為n1. ………………………………6分

設(shè)平面EBC的一個(gè)法向量n2=(x,y,1),由

,,得

 解得.………………… 8分

設(shè)所求的銳二面角為α,則

,∴.…………… 10分

(3)存在滿足題意的點(diǎn).證明如下:

. ………………………… 11分

,令與n2共線,則. ……………… 13分

.故存在P∈SM,使OP⊥面EBC.……………………… 14分

20. 解:(1)當(dāng)n為奇數(shù)時(shí),an≥a,于是,. ………………3分

         當(dāng)n為偶數(shù)時(shí),a-1≥1,且an≥a2,于是

=. …………6分

(2)∵,,∴公比.……9分

. …………………………………………10分

(注:如用求和公式,漏掉q=1的討論,扣1分)

 . ……………12分

.……15分21.解:(1)∵,,∴,∴. 1分

,即,∴. …3分

①當(dāng),即時(shí),上式不成立.………………………………………………4分

②當(dāng),即時(shí),.由條件,得到

,解得. ……………………………………………5分

,解得.…………………………………………6分

 m的取值范圍是. ………………………………………7分

(2)有一個(gè)實(shí)根.………………………………………………………………………………9分

,即

,則

,. ………………………10分

 △>0,故有相異兩實(shí)根

,∴ 顯然,

,∴,∴. …………12分

于是

                    

為三次函數(shù)的極小值點(diǎn),故與x軸只有一個(gè)交點(diǎn).

∴  方程只有一個(gè)實(shí)根.…………………………15分


同步練習(xí)冊(cè)答案