Rt△ABC中,斜邊AB=1,E為AB的中點,CD⊥AB,則的最大值為 . 查看更多

 

題目列表(包括答案和解析)

已知Rt△ABC,∠C=90°,設AC=m,BC=n.

(1)若D為斜邊AB的中點,求證:CD=AB:

(2)若E為CD的中點,連結AE并延長交BC于F,求AF的長度(用m,n表示).

查看答案和解析>>

1.  4   2.   3.  3.   4.    5.   6.   

7.  8. 3  9.32   10.  11. 它的前項乘積為,若,則 

12.  13. [1,1+]  14.  4

15.解:(1)當時,,

,∴上是減函數.

(2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當時,  不恒成立;

時,不等式恒成立,即,∴.

時,不等式不恒成立. 綜上,的取值范圍是.

16.解:(1)

(2),20 

20與=3解得b=4,c=5或b=5,c= 4

(3)設D到三邊的距離分別為x、y、z,則 

 又x、y滿足

畫出不等式表示的平面區(qū)域得: 

17. (Ⅰ)證明:連結,則//,   …………1分

是正方形,∴.∵,∴

,∴.    ………………4分

,∴,

.  …………………………………………5分

(Ⅱ)證明:作的中點F,連結

的中點,∴,

∴四邊形是平行四邊形,∴ . ………7分

的中點,∴

,∴

∴四邊形是平行四邊形,//

,

∴平面.  …………………………………9分

平面,∴.  ………………10分

(Ⅲ). ……………………………12分

.  ……………………………15分

18.解: (1)由,得,

   則由,解得F(3,0) 設橢圓的方程為,則,解得 所以橢圓的方程為  

   (2)因為點在橢圓上運動,所以,   從而圓心到直線的距離. 所以直線與圓恒相交

     又直線被圓截得的弦長為

由于,所以,則,

即直線被圓截得的弦長的取值范圍是

19. 解:⑴g(t) 的值域為[0,]…………………5分

…………………10分

⑶當時,+=<2;

時,.

所以若按給定的函數模型預測,該市目前的大氣環(huán)境綜合指數不會超標!15分

20.解:(1)

             當時,時,,

          

             的極小值是

     (2)要使直線對任意的


同步練習冊答案