∵.∴取時(shí).(元). 查看更多

 

題目列表(包括答案和解析)

(08年湖南卷理)對(duì)有n(n≥4)個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體

 (m是給定的正整數(shù),且2≤mn-2),再從

每個(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本.用表示元素ij同時(shí)出現(xiàn)在樣

本中的概率,則=          ; 所有 (1≤ij的和等于           .

查看答案和解析>>

(06年遼寧卷理)(12分)

現(xiàn)有甲、乙兩個(gè)項(xiàng)目,對(duì)甲項(xiàng)目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、;已知乙項(xiàng)目的利潤與產(chǎn)品價(jià)格的調(diào)整有關(guān),在每次調(diào)整中價(jià)格下降的概率都是,設(shè)乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)進(jìn)行2次獨(dú)立的調(diào)整,記乙項(xiàng)目產(chǎn)品價(jià)格在一年內(nèi)的下降次數(shù)為,對(duì)乙項(xiàng)目每投資十萬元, 取0、1、2時(shí), 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對(duì)甲、乙兩項(xiàng)目各投資十萬元一年后的利潤.

(I)  求、的概率分布和數(shù)學(xué)期望、;

(II)  當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

(1)解關(guān)于x的不等式

(2)記a>0時(shí)(1)中不等式的解集為A,集合B=,若恰有3個(gè)元素,求a的取值范圍。

 

查看答案和解析>>

(本小題滿分13分) 近段時(shí)間我國北方嚴(yán)重缺水, 某城市曾一度取消洗車行業(yè). 時(shí)間久了,車容影響了市容市貌. 今年該市決定引進(jìn)一種高科技產(chǎn)品污水凈化器,允許洗車行開始營業(yè),規(guī)定洗車行必須購買這種污水凈化器,使用凈化后的污水(達(dá)到生活用水標(biāo)準(zhǔn))洗車. 污水凈化器的價(jià)格是每臺(tái)90萬元,全市統(tǒng)一洗車價(jià)格為每輛每次8元. 該市今年的汽車總量是80000輛,預(yù)計(jì)今后每年汽車數(shù)量將增加2000輛.洗車行A經(jīng)過測(cè)算,如果全市的汽車總量是x,那么一年內(nèi)在該洗車行洗車的平均輛次是,該洗車行每年的其他費(fèi)用是20000元. 問:洗車行A從今年開始至少經(jīng)過多少年才能收回購買凈化器的成本?(注:洗車行A買一臺(tái)污水凈化器就能滿足洗車凈水需求)

查看答案和解析>>

(本題滿分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案