9.設(shè)直線: 的傾斜角為.直線: 的傾斜角為.且 .則的值為 .學(xué)科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

設(shè)傾斜角為的直線通過拋物線的焦點(diǎn)且與拋物線相交于M、N兩點(diǎn),則線段MN的長等于:

                                           A.16                    B.           C.8                         D.

查看答案和解析>>

設(shè)直線l過點(diǎn)P(-3,3),且傾斜角為.
(1)寫出直線l的參數(shù)方程;
(2)設(shè)此直線與曲線C (θ為參數(shù))交于A,B兩點(diǎn),求|PA|·|PB|.

查看答案和解析>>

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)結(jié)論:
(1)當(dāng)直線垂直y軸時(shí),θ=0或π;
(2)當(dāng)數(shù)學(xué)公式時(shí),直線的傾斜角為120°;
(3)M中所有直線均經(jīng)過一個(gè)定點(diǎn);
(4)存在定點(diǎn)P不在M中的任意一條直線上.
其中正確的是________(寫出所有正確的代號(hào))

查看答案和解析>>

設(shè)直線l的方程為:x+ysinθ-2013=0(θ∈R),則直線l的傾斜角α的范圍是( )
A.[0,π)
B.
C.
D.

查看答案和解析>>

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)結(jié)論:
(1)當(dāng)直線垂直y軸時(shí),θ=0或π;
(2)當(dāng)時(shí),直線的傾斜角為120°;
(3)M中所有直線均經(jīng)過一個(gè)定點(diǎn);
(4)存在定點(diǎn)P不在M中的任意一條直線上.
其中正確的是    (寫出所有正確的代號(hào))

查看答案和解析>>

一、填空題

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答題

15[解]:證:設(shè)   ,連 。                    

 ⑴  ∵為菱形,   ∴ 中點(diǎn),又中點(diǎn)。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵為菱形,   ∴,              (9分)

   又∵,     (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵, (8分)

        ∵,∴, 。

        ∴                (10分)

         

             (13分)

          (當(dāng)時(shí)取“”)   

所以的最大值為,相應(yīng)的    (14分)

17.解:⑴直線的斜率 ,中點(diǎn)坐標(biāo)為 ,

        ∴直線方程為     (4分)

        ⑵設(shè)圓心,則由上得:

                             ①      

        又直徑,,

         

           ②       (7分)

由①②解得

∴圓心                  

∴圓的方程為  或  (9分)                         

 ⑶  ,∴ 當(dāng)△面積為時(shí) ,點(diǎn)到直線的距離為 。                   (12分)

 又圓心到直線的距離為,圓的半徑   

∴圓上共有兩個(gè)點(diǎn)使 △的面積為  .  (14分)

18[解] (1)乙方的實(shí)際年利潤為:  .   (5分)

,

當(dāng)時(shí),取得最大值.

      所以乙方取得最大年利潤的年產(chǎn)量 (噸).…………………8分

 (2)設(shè)甲方凈收入為元,則

學(xué)科網(wǎng)(Zxxk.Com) 將代入上式,得:.   (13分)

    又

    令,得

    當(dāng)時(shí),;當(dāng)時(shí),,所以時(shí),取得最大值.

    因此甲方向乙方要求賠付價(jià)格 (元/噸)時(shí),獲最大凈收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距離的最小值即為到直線的距離(4分)

                      (7分)

   ⑵假設(shè)存在正數(shù),令 (9分)

   由得:  

   ∵當(dāng)時(shí), ,∴為減函數(shù);

   當(dāng)時(shí),,∴ 為增函數(shù).

   ∴         (14分)

   ∴

的取值范圍為        (16分)

 

20. 解:⑴由條件得:  ∴  (3分)

     ∵為等比數(shù)列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

為遞增數(shù)列。                              (11分)

從而       (14分)

                            (16分)

附加題答案

21.         (8分)

22. 解:⑴①當(dāng)時(shí),

       ∴                                                      (2分)

        ②當(dāng)時(shí),

       ∴                                                 (4分)

        ③當(dāng)時(shí),

       ∴                                                (6分)

       綜上該不等式解集為                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴設(shè)為軌跡上任一點(diǎn),則

                                             (4分)

       化簡得:   為求。                                (6分)

       ⑵設(shè),,

         ∵  ∴                        (8分)

         ∴ 為求                                   (12分)


同步練習(xí)冊(cè)答案