題目列表(包括答案和解析)
如圖6,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)證明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.
【解析】(Ⅰ)因為
又是平面PAC內(nèi)的兩條相較直線,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)設AC和BD相交于點O,連接PO,由(Ⅰ)知,BD平面PAC,
所以是直線PD和平面PAC所成的角,從而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因為四邊形ABCD為等腰梯形,,所以均為等腰直角三角形,從而梯形ABCD的高為于是梯形ABCD面積
在等腰三角形AOD中,
所以
故四棱錐的體積為.
【點評】本題考查空間直線垂直關(guān)系的證明,考查空間角的應用,及幾何體體積計算.第一問只要證明BD平面PAC即可,第二問由(Ⅰ)知,BD平面PAC,所以是直線PD和平面PAC所成的角,然后算出梯形的面積和棱錐的高,由算得體積
如圖,在三棱錐中,平面平面,,,,為中點.(Ⅰ)求點B到平面的距離;(Ⅱ)求二面角的余弦值.
【解析】第一問中利用因為,為中點,所以
而平面平面,所以平面,再由題設條件知道可以分別以、、為,, 軸建立直角坐標系得,,,,,,
故平面的法向量而,故點B到平面的距離
第二問中,由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
解:(Ⅰ)因為,為中點,所以
而平面平面,所以平面,
再由題設條件知道可以分別以、、為,, 軸建立直角坐標系,得,,,,
,,故平面的法向量
而,故點B到平面的距離
(Ⅱ)由已知得平面的法向量,平面的法向量
故二面角的余弦值等于
A.充分而不必要條件 | B.必要而不充分條件 |
C.充要條件 | D.既不充分也不必要條件 |
A.充分而不必要條件 | B.必要而不充分條件 |
C.充要條件 | D.既不充分也不必要條件 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com