題目列表(包括答案和解析)
解析 根據(jù)題意知,分子都是x,分母中的常數(shù)項(xiàng)依次是2,4,8,16,…可知fn(x)的分母中常數(shù)項(xiàng)為2n,分母中x的系數(shù)為2n-1,故fn(x)=.
答案 .
歐拉(Euler),瑞士數(shù)學(xué)家及自然科學(xué)家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國(guó)彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位.
歐拉是18世紀(jì)數(shù)學(xué)界最杰出的人物之一,他不但為數(shù)學(xué)界做出了巨大的貢獻(xiàn),更把數(shù)學(xué)推至幾乎整個(gè)物理的領(lǐng)域.他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家,平均每年寫(xiě)出八百多頁(yè)的論文,還寫(xiě)了大量的力學(xué)、分析學(xué)、幾何學(xué)、變分法等的課本,《無(wú)窮小分析引論》、《微分學(xué)原理》、《積分學(xué)原理》等都成為數(shù)學(xué)中的經(jīng)典著作.
歐拉對(duì)數(shù)學(xué)符號(hào)的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對(duì)數(shù)的底,用i表示-1,用f(x)作為函數(shù)的符號(hào),π雖不是歐拉首先提出的,但是在歐拉倡導(dǎo)下推廣普及的.尤為不可思議的是歐拉將數(shù)學(xué)中最為活躍的五個(gè)數(shù)1,0,π,e,i竟用一個(gè)美妙絕倫的公式聯(lián)系了起來(lái):eiπ+1=0(歐拉指數(shù)公式),在西方數(shù)學(xué)界甚至認(rèn)為此公式不亞于神的力量.
歐拉對(duì)數(shù)學(xué)的研究如此廣泛,因此在許多數(shù)學(xué)的分支中也可經(jīng)常見(jiàn)到以他的名字命名的重要常數(shù)、公式和定理.
1.你對(duì)歐拉(Euler)了解嗎?請(qǐng)查閱歐拉(Euler)的故事,對(duì)于他“13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位”,你有何感觸?
2.作為新時(shí)代的青年,你做好將來(lái)為科學(xué)事業(yè)做貢獻(xiàn)的思想準(zhǔn)備了嗎?
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),證明:對(duì)任意,.
1.選修4-1:幾何證明選講
如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn)
(Ⅰ)證明:∽△;
(Ⅱ)若的面積,求的大小.
證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.
因?yàn)椤?i>AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因?yàn)椤?i>ABE∽△ADC,所以,即AB·AC=AD·AE.
又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.
求圓心在直線y=-2x上,并且經(jīng)過(guò)點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
“肇實(shí),正名芡實(shí),因肇慶所產(chǎn)之芡實(shí)顆粒大、藥力強(qiáng),故名.”某科研所為進(jìn)一步改良肇實(shí),為此對(duì)肇實(shí)的兩個(gè)品種(分別稱(chēng)為品種A和品種B)進(jìn)行試驗(yàn).選取兩大片水塘,每大片水塘分成n小片水塘,在總共2n小片水塘中,隨機(jī)選n小片水塘種植品種A,另外n小片水塘種植B.
(1)假設(shè)n=4,在第一大片水塘中,種植品種A的小片水塘的數(shù)目記為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)試驗(yàn)時(shí)每大片水塘分成8小片,即n=8,試驗(yàn)結(jié)束后得到品種A和品種B在每個(gè)小片水塘上的每畝產(chǎn)量(單位:kg/畝)如下表:
分別求品種A和品種B的每畝產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com