要使.則只需.即.而.因此不存在點E使得成立. 查看更多

 

題目列表(包括答案和解析)

某網(wǎng)民用電腦上因特網(wǎng)有兩種方案可選:一是在家里上網(wǎng),費用分為通訊費(即電話費)與網(wǎng)絡(luò)維護(hù)費兩部分.現(xiàn)有政策規(guī)定:通訊費為0.02元/分鐘,但每月30元封頂(即超過30元則只需交30元),網(wǎng)絡(luò)維護(hù)費1元/小時,但每月上網(wǎng)不超過10小時則要交10元;二是到附近網(wǎng)吧上網(wǎng),價格為1.5元/小時.
(1)將該網(wǎng)民在某月內(nèi)在家上網(wǎng)的費用y(元)表示為時間t(小時)的函數(shù);
(2)試確定在何種情況下,該網(wǎng)民在家上網(wǎng)更便宜?

查看答案和解析>>

(9分)某網(wǎng)民用電腦上因特網(wǎng)有兩種方案可選:一是在家里上網(wǎng),費用分為通訊費(即電話費)與網(wǎng)絡(luò)維護(hù)費兩部分.現(xiàn)有政策規(guī)定:通訊費為0.2元/小時,但每月30元封頂(即超過30元則只需交30元),網(wǎng)絡(luò)維護(hù)費1元/小時,但每月上網(wǎng)不超過10小時則要交10元;二是到附近網(wǎng)吧上網(wǎng),價格為1.5元/小時.

(1)將該網(wǎng)民在某月內(nèi)在家上網(wǎng)的費用y(元)表示為時間t(小時)的函數(shù);

(2)試確定在何種情況下,該網(wǎng)民在家上網(wǎng)更便宜?

 

查看答案和解析>>

(本題滿分12分)某網(wǎng)民用電腦上因特網(wǎng)有兩種方案可選:一是在家里上網(wǎng),費用分為通訊費(即電話費)與網(wǎng)絡(luò)維護(hù)費兩部分。現(xiàn)有政策規(guī)定:通訊費為0.02元/分鐘,但每月30元封頂(即超過30元則只需交30元),網(wǎng)絡(luò)維護(hù)費1元/小時,但每月上網(wǎng)不超過10小時則要交10元;二是到附近網(wǎng)吧上網(wǎng),價格為1.5元/小時。

(1)將該網(wǎng)民在某月內(nèi)在家上網(wǎng)的費用(元)表示為時間(小時)的函數(shù);

(2)試確定在何種情況下,該網(wǎng)民在家上網(wǎng)更便宜?

 

查看答案和解析>>

某網(wǎng)民用電腦上因特網(wǎng)有兩種方案可選:一是在家里上網(wǎng),費用分為通訊費(即電話費)與網(wǎng)絡(luò)維護(hù)費兩部分.現(xiàn)有政策規(guī)定:通訊費為0.02元/分鐘,但每月30元封頂(即超過30元則只需交30元),網(wǎng)絡(luò)維護(hù)費1元/小時,但每月上網(wǎng)不超過10小時則要交10元;二是到附近網(wǎng)吧上網(wǎng),價格為1.5元/小時.
(1)將該網(wǎng)民在某月內(nèi)在家上網(wǎng)的費用y(元)表示為時間t(小時)的函數(shù);
(2)試確定在何種情況下,該網(wǎng)民在家上網(wǎng)更便宜?

查看答案和解析>>

已知,函數(shù)

(1)當(dāng)時,求函數(shù)在點(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時,  又    

∴  函數(shù)在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設(shè)

求導(dǎo),得

    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實數(shù)的取值范圍是(,

 

查看答案和解析>>


同步練習(xí)冊答案