16.下列說法正確的是 .(寫出所有正確說法的序號) 查看更多

 

題目列表(包括答案和解析)

下列說法正確的是(    )(寫出所有正確說法的序號)。
①若p是q的充分不必要條件,則p是q的必要不充分條件;
②命題的否定是
③設(shè)x,y∈R,命題“若xy=0,則x2+y2=0”的否命題是真命題;
④若,則z=

查看答案和解析>>

給出下列四個結(jié)論:

①在畫兩個變量的散點圖時,預(yù)報變量在軸上,解釋變量在軸上;

②線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越;

③用獨立性檢驗(2Χ2列聯(lián)表法)來考察兩個分類變量是否有關(guān)系時,算出的隨機變量k2的值越大,說明“x與y有關(guān)系”成立的可能性越大;

④殘差平方和越小的模型,擬合的效果越好;

其中結(jié)論正確的序號為             。(寫出你認為正確的所有結(jié)論的序號)

 

查看答案和解析>>

某工廠年來生產(chǎn)某種產(chǎn)品的總產(chǎn)量與時間(年)的函數(shù)關(guān)系如圖所示,有下列四種說法:①前三年中產(chǎn)量增長的速度越來越快;②前三年中產(chǎn)量增長的速度越來越慢;③前三年中年產(chǎn)量保持不變;④第三年后,這種產(chǎn)品停止生產(chǎn)。其中正確的說法是           (只要寫出說法的序號)          

查看答案和解析>>

某工廠年來生產(chǎn)某種產(chǎn)品的總產(chǎn)量與時間(年)的函數(shù)關(guān)系如圖所示,有下列四種說法:①前三年中產(chǎn)量增長的速度越來越快;②前三年中產(chǎn)量增長的速度越來越慢;③前三年中年產(chǎn)量保持不變;④第三年后,這種產(chǎn)品停止生產(chǎn)。其中正確的說法是          (只要寫出說法的序號)          

查看答案和解析>>

(08年聊城市一模) 給出以下命題:

①合情推理是由特殊到一般的推理,得到的結(jié)論不一定正確,演繹推是由一般到特殊的推理,得到的結(jié)論一定正確。

②甲、乙兩同學(xué)各自獨立地考察兩個變量X、Y的線性相關(guān)關(guān)系時,發(fā)現(xiàn)兩人對X的觀察數(shù)據(jù)的平均值相等,都是s,對Y的觀察數(shù)據(jù)的平均值也相等,都是t,各自求出的回歸直線分別是l1l2,則直線l1l2必定相交于點(s,t)。

③某企業(yè)有職工150人,其中高級職稱15人,中級職稱45人,一般職員90人,若用分層抽樣的方法抽出一個容量為30的樣本,則一般職員應(yīng)抽出20人。

④用獨立性檢驗(2×2列聯(lián)表法)來考察兩個分類變量是否有關(guān)系時,算出的隨機變量K2的值越大,說明“X與Y有關(guān)系”成立的可能性越大。

其中真命題的序號是           (寫出所有真命題的序號)。

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由,

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當

       因此,當時,

      

       當

           12分

18.解:(1)依題意,甲答對主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因為事件A、B相互獨立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過點E作EG交CF于G,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因為平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)過點B作交FE的延長線于H,

       連結(jié)AH,BH。

       由平面

       所以為二面角A―EF―C的平面角

      

       又因為

       所以CF=4,從而BE=CG=3。

       于是    10分

       在

       則,

       因為

               解法二:(1)如圖,以點C為坐標原點,

               建立空間直角坐標系

               設(shè)

               則

              

               于是

         

         

         

         

        20.解:(1)當時,由已知得

              

               同理,可解得   4分

           (2)解法一:由題設(shè)

               當

               代入上式,得     (*) 6分

               由(1)可得

               由(*)式可得

               由此猜想:   8分

               證明:①當時,結(jié)論成立。

               ②假設(shè)當時結(jié)論成立,

               即

               那么,由(*)得

              

               所以當時結(jié)論也成立,

               根據(jù)①和②可知,

               對所有正整數(shù)n都成立。

               因   12分

               解法二:由題設(shè)

               當

               代入上式,得   6分

              

              

               -1的等差數(shù)列,

              

                  12分

        21.解:(1)由橢圓C的離心率

               得,其中,

               橢圓C的左、右焦點分別為

               又點F2在線段PF1的中垂線上

              

               解得

                  4分

           (2)由題意,知直線MN存在斜率,設(shè)其方程為

               由

               消去

               設(shè)

               則

               且   8分

               由已知,

               得

               化簡,得     10分

              

               整理得

        * 直線MN的方程為,     

               因此直線MN過定點,該定點的坐標為(2,0)    12分

        22.解:   2分

           (1)由已知,得上恒成立,

               即上恒成立

               又

                  4分

           (2)當時,

               在(1,2)上恒成立,

               這時在[1,2]上為增函數(shù)

                

               當

               在(1,2)上恒成立,

               這時在[1,2]上為減函數(shù)

              

               當時,

               令 

               又 

                   9分

               綜上,在[1,2]上的最小值為

               ①當

               ②當時,

               ③當   10分

           (3)由(1),知函數(shù)上為增函數(shù),

               當

              

               即恒成立    12分

              

              

              

               恒成立    14分


        同步練習冊答案